Estimating the interconversion between CO2 and organic matter in the environment using mathematical models and some considerations
DOI:
https://doi.org/10.5216/rbn.v17i1.61889Palabras clave:
atmosphere volume, climatic change, mathematical models, organic matter, plant extinctionResumen
The aims was to use mathematical models to analyze the interconversion between the amount of organic matter produced and the consequent variation in the concentration of CO2 in the atmosphere and to discuss, supported by the data presented and the literature, possible changes in the Earth's environment. Scientific findings and evidence indicate that the concentrations of CO2 and O2 varied throughout the existence of the Earth. These variations were a consequence of the existing environment in different Eras, resulting in changes in all other processes that depended on these gases. Chemical reactions occurred and organic products such as petroleum arose abiotically. These products gave origin to organic chemistry and drastically reduced the concentration of CO2 and elevated O2 in the atmosphere. In the current plants, for each O2 produced in the photochemical step of photosynthesis, one CO2 is assimilated in the biochemical step. Supported by this relationship and by the results presented in this work, it can be inferred that the first photosynthetic organisms originated on Earth when the concentration of CO2 was possibly at a concentration below 1000 ppm. Biochemistry started with these organisms. The results suggest that the reduction in CO2 concentration was linear in relation to the age of the Earth, before the origin of photosynthetic organisms. This relationship changed with origin of these organisms, due to the major changes that occurred in the environment. There is evidence that in certain periods, CO2 concentrations have been reduced below the CO2 compensation point for certain plants resulting in the extinction of these plants and the organisms that depended on them.
Descargas
Citas
Abelson, P. H. 1978. Organic matter in the earth's crust. Ann. Rev. Earth Planet. Sci. 6: 325-51.
Bambach, R. K. 2006. Phanerozoic Biodiversity Mass Extinctions, Annu. Rev. Earth Planet. Sci. 34: 127 – 155.
Bellefroid, E. J., A. V. S. Hood, P. F. Hoffman, M. F. Thomas, C. T. Reinhard & N. J. Planavsky. 2018. Constraints on Paleoproterozoic atmospheric oxygen levels. PNAS, 115: 8104-8109. DOI: www.pna.org/cgi/doi/10.1073/pnas.1806216115
Blankenship, R. E. 2014. Molecular mechanisms of photosynthesis. 2. ed. Oxford, Wiley Blackwell.
Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. Zhao & A. Cescatti. 2017. Local temperature response to land cover and management change driven by nonradiative processes. Nat. Clim. Change. 7: 296–302. DOI:10.1038/nclimate3250
Chave, J., R. Condit, S. Lao, J. P. Caspersen, R. B. Foster & S. P. Hubbell. 2003. Spatial and temporal variation of biomass in a tropical forest: result from a large census plot in Panama. J. Ecology. 91: 240-252.
Cox P. M., R. A. Betts, C. D. Jones, S. A. Spall & I. J. Totterdell. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 408: 184-187. DOI: https://doi.org/10.1038/35041539
Ehleringer, J. R., R. F. Sage, L. B. Flanagan & R. W. Pearcy. 1991. Climate change and the evolution of C4 Photosynthesis. Trends Ecol. Evol. 6: 95-99. DOI: https://doi.org/10.1016/0169-5347(91)90183-X
Ehleringher, J. R., T. C. Cerling & M. D. Dearing. 2005. A history of atmospheric CO2 and its effects on plant, animals, and ecosystems. Ecological Studies. v. 177. New York, Springer.
Ehleringher, J. R., T. C. Cerling & B. R. Helliker. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia. 112: 285-299.
Farquhar, J., A. L. Zerkle & A. Bekker. 2011. Geological constraints on the origin of oxygenic photosynthesis. Photosyn. Res. 107: 11–36.
Farquhar, G. D. & S. Von Caemmerer. 1982. Modelling of photosynthetic response to environmental conditions, pp. 549–588. In: Lange, O. L, P.S. Nobel, C. B. Osmond & H. Ziegler (Eds.). Physiological plant ecology II. Water relations and carbon assimilation, Encyclopedia of Plant Physiology. v. 12B. Berlin/Heidelberg/New York, Springer.
Foucher, P. Y., A. Chédin, R. Armante, C. Boone, C. Crevoisier & P. Bernath. 2011. Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument. Atmos. Chem. Phys. 11: 255-2470. DOI: https://doi.org/10.5194/acp-11-2455-2011.
Franck, S., K. Kossacki & C. Bounama. 1999. Modelling the global carbon cycle for the past and future evolution of the earth system. Chem. Geol. 159: 305–317.
Graham, D. & E. A. Chapman. 1979. Interactions between photosynthesis and respiration in higher plants. pp. 150-160. In: Pirson, A. & M. H. Zimmerman (Eds). Photosynthesis II. Photosynthetic carbon metabolism and related process. Berlin, Springer-Velag.
Gowik, U. & P. Westhoff. 2011.The path from C3 to C4 photosynthesys. Plant Physiol. 155: 56-63.
Hatch, M. D. & C. R. Slack. 1966.Photosynthesis by sugarcane leaves. A new carboxilation reaction and the pathway of sugar formation. Biochem. J. 101: 103-111.
Heldt, H. W. & B. Piechulla. 2011. Plant Biochemistry. 4 ed. London, Elsevier.
Howe, P. D., E. M. Markowitz, T. M. Lee, C. Y. Ko, & A. Leiserowitz. 2013. Global perceptions of local temperature change. Nat. Clim. Change. 3: 352–356.
IPCC. 2007. Intergovernmental Panel on Climate Change Fourth Assessment Report: Climate Change 2007. Synthesis Report. World Meteorological Organization, Geneva.
Kerbauy, G. B. 2008. Fisiologia Vegetal. 2 ed. Rio de Janeiro, Editora Guanabara-Koogan S. A.
Makarieva, A. M. & V. G. Gorshkov. 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst.Sci. 11: 1013-1033.
Negron-Mendoza A. & S. Ramos-Bernal. 2000. Chemical Evolution in the Early Earth. pp. 71-84. In: Chela-Flores J., G. A. Lemarchand & J. Oró (Eds). Astrobiology. Dordrecht, Springer. DOI: https://doi.org/10.1007/978-94-011-4313-4_6
Osborne, C. P. & D. J. Beerling. 2006. Nature´s green revolution: the remarkable evolutionary rise of C4 plants. Phil. Trans. R. Soc. B. 361: 173-194. DOI: https://doi.org/10.1098/rstb.2005.1737
Portes T. A., S. I. C. Carvalho, I. P. Oliveira & J. Kluthcouski. 2000. Análise de crescimento de uma cultivar de braquiária em cultivo solteiro e consorciado com cereais. Pesq. Agropec. Brasil. 35: 1349-1358.
Portes, T. A. & S. I. C. Carvalho. 2009. Crescimento e alocação de fitomassa de cinco gramíneas forrageiras em condições de Cerrado. Rev. Bio. Neotrop. 6: 01-14.
Portes, T. A. 2020. Earth CO2 dynamics: from CO2 to organic matter and back CO2, a flow estimate. Rev. Biol. Neotrop. 17: 47-55. DOI: https://doi.org/10.5216/rbn.v17i1.59419
Ruzmaikin, A. & A. Byalko. 2015. On the relationship between atmospheric carbon dioxide and global temperature. Am. J. Clim. Change. 4: 181-186. DOI: http://dx.doi.org/10.4236/ajcc.2015.43014
Saatchia, S. S., N. L. Harris, S. Brown, M. Lefskyd, E. T. A. Mitchard, W. Salas, B. R. Zutta, W. Buermann, S. L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman & A. Morel. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS. 108: 9899–9904. DOI: www.pnas.org/cgi/doi/10.1073/pnas.1019576108
Sage, R. F. 1995. Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Global Change Biol. 1: 93-106. DOI: https://doi.org/10.1111/j.1365-2486.1995.tb00009.x
Sage, R. F. 1999. Why C4 photosynthesis. pp. 3-16. In: Sage R. & R. K. Monson (Eds.). C4 plant biology. San Diego, Academic Press.
Sage, R. F. 2004 The evolution of C4 photosynthesis. New Phytol. 161: 341-370.
Sage, R. F. 2005. Atmospheric CO2, Environmental Stress, and the Evolution of C4 Photosynthesis. pp. 185-213. In: Ehleringer, J. R., T. Cerling & M. D. Dearing (Eds.). A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. New York, Springer.
Salati, E. & C. A. Nobre. 1991. Possible climatic impacts of tropical deforestation. Clim. Change. 19: 177-196.
Sheil, D. & D. Murdiyarso. 2009. How forests attract rain: an examination of a new hypothesis. BioScience. 59: 341–347. DOI: https://doi.org/10.1525/bio.2009.59.4.12
Shukla J., C. Nobre & P. Sellers. 1990. Amazon deforestation and climate change. Science. 247: 1322-1325. DOI: 10.1126/science.247.4948.1322
Sikolia, S., E. Beck, & J. C. Onyango. 2009. Carbon dioxide compensation points of some dicots of the Centrospermeae species and their ecological implications for agroforestry. Int. J. Botany. 5: 67-75.
Schopf, J. W. 1983. Earth's earliest biosphere: Iis origin and evolution. Princeton, University Press.
Taiz, L; E. Zeiger, I. M Møller, & A. Murphy. 2014. Plant physiology and development. 6 ed. Sunderland, Sinauer Associates/ Oxford University Press.
Tolbert, N. E. 1979. Glycolate metabolism by higher plants and algae. pp. 338-351. In: Gibbs, M. & E. Latzko (Eds). Photosynthesis II: Photosynthetic carbon metabolism and related processes (Encyclopedia of Plant Physiology New Ser.6). Berlin, Springer-Verlag.
Tolbert, N.E., C. Benker & E. Beck. 1995. The oxygen and carbon dioxide compensation points of C3 plants: possible role in regulation atmospheric oxygen. Proc. Natl Acad. Sci. 92: 11230-11233.
Walker, D. A. 1992. Energy, plants and Man. Brighton, East Sussex, Oxygraphics Limited.
Walker, J. C. G. 1990. Precambrian evolution of the climate system. Palaeogeogr., Palaeoclimatol., Paiaeoecol. Global Planet. Change. 2: 261-289. DOI: https://doi.org/10.1016/0921-8181(90)90005-W
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión espontánea de trabajos automáticamente implica en la cesión integral de los derechos patrimoniales a la Revista de Biologia Neotropical / Journal of Neotropical Biology (RBN), después de la publicación. El autor concede a la RBN el derecho de la primera publicación de su articulo, licenciado bajo Licencia Creative Commons Attribution 4.0 (CC BY-NC 4.0).
Lo son garantizados a los autores los derechos autorales y morales de cada uno de los artículos publicados por la RBN, permitiéndoles:
1. El uso del artículo y de suyo contenido para el propósito de enseñanza y de investigación.
2. Divulgación del artículo y de suyo contenido, si lo hacer el link para el Artículo en sitio web de la RBN, permitiéndole la divulgación en:
- redes cerradas de instituciones (intranet).
- repositorios de acceso abierto.
3. Elaboración y divulgación de obras resultantes del artículo y de suyo contenido, si lo hacer la citación de la publicación original en la RBN.
4. Hacer copias impresas en pequeñas cantidades para uso personal.