Antibiotic resistance gene occurrence in poultry farms in northeast Brazil
DOI:
https://doi.org/10.1590/1809-6891v26e-79298EAbstract
The misuse of antibiotics in food-producing animal farming practices exerts selective
pressure on bacterial strains, intensifying the spread of pathogenic and commensal bacteria carrying
antibiotic resistance genes (ARGs). We conducted a study aiming to investigate ARGs in chicken litter
from farms in the State of Sergipe, Northeast Brazil. A total of 14 chicken litter samples were collected
from twelve farms and subjected to total DNA extraction. The presence of ARGs in the obtained
material was tested by Polymerase Chain Reaction (PCR) using primers for selected ARGs. ARGs
were confirmed in all samples, and the highest resistance positivity was obtained for tetracyclines
(tetA, tetM, and tetG), quinolones (gyrA and qnrS), beta-lactams (blaTEM), macrolides (ermB) and
sulfonamides (sul-1). Sequencing and comparison with the GenBank database confirmed the identity
of the ARGs. Some of the sequences that were amplified by PCR were similar to resistance factors
found in Gram-positive and Gram-negative bacteria of different species, mostly enterobacteria.
Furthermore, similarity was observed for resistance determinants located both on the chromosome
and on plasmids, transposons, and integrons. Our results indicate the potential of poultry farming
for the environmental dissemination of ARGs in the State of Sergipe.
Downloads
References
van Cuong N, Kiet BT, Hien VB, Truong BD, Phu DH, Thwaites G, et al. Antimicrobial use through consumption of medicated feeds in chicken flocks in the Mekong Delta of Vietnam: A three-year study before a ban on antimicrobial growth promoters. PLoS One. 2021;16(4): e0250082. http://doi.org/10.1371/journal.pone.0250082
Langata LM, Maingi JM, Musonye HA, Kiiru J, Nyamache AK. Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Research Notes. 2019;12(1):22. https://doi.org/10.1186/s13104-019-4068-8
Farooq M, Smoglica C, Ruffini F, Soldati L, Marsilio F, Di Francesco CE. Antibiotic resistance genes occurrence in conventional and antibiotic-free poultry farming, Italy. Animals (Basel). 2022;12(18):2310. https://doi.org/10.3390/ani12182310
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence - Implications for human health and treatment perspectives. EMBO Reports. 2020;21(12): e51034. https://doi.org/10.15252/embr.202051034
Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nature Reviews Microbiology. 2022;20(5):257–269. https://doi.org/10.1038/s41579-021-00649-x
Alalam H, Graf FE, Palm M, Abadikhah M, Zackrisson M, Boström J, et al. A high-throughput method for screening for genes controlling bacterial conjugation of antibiotic resistance. mSystems. 2020;5(6):e01226-20. https://doi.org/10.1128/mSystems.01226-20
Oladeinde A, Abdo Z, Zwirzitz B, Woyda R, Lakin SM, Press MO, et al. Litter commensal bacteria can limit the horizontal gene transfer of antimicrobial resistance to Salmonella in chickens. Applied and Environmental Microbiology. 2022;88(9):e0251721. https://doi.org/10.1128/aem.02517-21
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in Gram-negative bacteria: From the cellular to the community level. Genes (Basel). 2020;11(11):1239. https://doi.org/10.3390/genes11111239
Lima T, Domingues S, Silva GJ Da. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Veterinary Sciences. 2020;7(3):110. https://doi.org/10.3390/vetsci7030110
Vumazonke S, Khamanga SM, Ngqwala NP. Detection of pharmaceutical residues in surface waters of the Eastern Cape Province. International Journal of Environmental Research and Public Health. 2020;17(11)4067. https://doi.org/10.3390/ijerph17114067
Ngogang MP, Ernest T, Kariuki J, Mouiche MMM, Ngogang J, Wade A, et al. Microbial contamination of chicken litter manure and antimicrobial resistance threat in an urban area setting in Cameroon. Antibiotics (Basel). 2021;10(1):20. https://doi.org/10.3390/antibiotics10010020
Wang L, Chai B. Fate of antibiotic resistance genes and changes in bacterial community with increasing breeding scale of layer manure. Frontiers in Microbiology. 2022;13:857046. https://doi.org/10.3389/fmicb.2022.857046
Oxendine A, Walsh AA, Young T, Dixon B, Hoke A, Rogers EE, et al. Conditions necessary for the transfer of antimicrobial resistance in poultry litter. Antibiotics (Basel). 2023;12(6):1006. https://doi.org/10.3390/antibiotics12061006
Chen Q, An X, Li H, Su J, Ma Y, Zhu YG. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environment International. 2016;92–93:1–10. https://doi.org/10.1016/j.envint.2016.03.026
Duan M, Gu J, Wang X, Li Y, Zhang R, Hu T, et al. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and Environmental Safety. 2019;180:114–122. https://doi.org/10.1016/j.ecoenv.2019.05.005
Fatoba DO, Abia ALK, Amoako DG, Essack SY. Rethinking manure application: Increase in multidrug-resistant enterococcus spp. in agricultural soil following chicken litter application. Microorganisms. 2021;9(5):885. https://doi.org/10.3390/microorganisms9050885
Lentz SAM. Atualização sobre Uso Racional de Antimicrobianos e Boas Práticas de Produção. Opas/Mapa. 2022;1–50. Available from: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/resistencia-aos-antimicrobianos/publicacoes/Apostila_AtualizaosobreUsoRacionaldeAntimicrobianoseBoasPrticasdeProduo.pdf
Brasil. Instrução Normativa No26, de 10 de julho de 2009. Ministério da Agricultura Pecuária e Abastecimento - MAPA. 2009;9. https://wikisda.agricultura.gov.br/dipoa_baselegal/in_9-2009_listeria.pdf
Brasil. Instrução Normativa No 45, De 22 De Novembro De 2016. Dou. 2016;4. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/legislacao/instrucao-normativa-no-45-de-22-de-novembro-de-2016.pdf
Brasil. Ministério da Saúde. Plano de Ação Nacional de Prevenção e Controle da Resistência aos Antimicrobianos no Âmbito da Saúde Única. 2019;1. https://bvsms.saude.gov.br/bvs/publicacoes/plano_prevencao_resistencia_antimicrobianos.pdf
antimicrobianos/plano-nacional-antimicrobianos-pan-br-14fev19-isbn.pdf/view
Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AMF. Antimicrobial resistance in farm animals in Brazil: An update overview. Animals (Basel). 2020;10(4):552. https://doi.org/10.3390/ani10040552
SENAI. Manual de Segurança e Qualidade para a Avicultura de Postura Manual de Segurança e Qualidade para a Avicultura de Postura. Embrapa. 2004;1–100.
Subirats J, Murray R, Scott A, Lau CHF, Topp E. Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. Science of the Total Environment. 2020;746:141113. https://doi.org/10.1016/j.scitotenv.2020.141113
Trindade, P. R. C. M., Dolabella, S. S., Jain, S., Nascimento, L. F. . de J., Sacramento, A. . G., Barbosa, F. H. F., & Teixeira Barbosa, A. A. (2024). Ocorrência e persistência de genes de resistência a antibióticos em estações de tratamento de esgoto em Aracaju/SE/Brasil. Scientia Plena, 20(10). https://doi.org/10.14808/sci. plena.2024.10620125. Limayem A, Micciche A, Nayak B, Mohapatra S. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing. Environmental Science and Pollution Research. 2018;25(1):704–711. https://doi.org/10.1007/s11356-017-0078-z
Limayem A, Micciche A, Nayak B, Mohapatra S. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing. Environmental Science and Pollution Research. 2018;25(1):704–711. https://doi.org/10.1007/s11356-017-0078-z
Cornejo J, Yevenes K, Avello C, Pokrant E, Maddaleno A, Martin BS, et al. Determination of chlortetracycline residues, antimicrobial activity and presence of resistance genes in droppings of experimentally treated broiler chickens. Molecules. 2018;23(6):1264. https://doi.org/10.3390/molecules23061264
Jia J, Guan Y, Cheng M, Chen H, He J, Wang S, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China. Science of the Total Environment. 2018;642:1136–1144. https://doi.org/10.1016/j.scitotenv.2018.06.149
Furlan JPR, dos Santos LDR, Moretto JAS, Ramos MS, Gallo IFL, Alves G de AD, et al. Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho dam disaster, Brazil. Science of the Total Environment. 2020;726:138100. https://doi.org/10.1016/j.scitotenv.2020.138100
Ayandiran TO, Falgenhauer L, Schmiede J, Chakraborty T, Ayeni FA. High resistance to tetracycline and ciprofloxacin in bacteria isolated from poultry farms in Ibadan, Nigeria. Journal of Infection in Developing Countries. 2018;12(6):462–470. https://doi.org/10.3855/jidc.9862
Collignon PJ, McEwen SA. One health-its importance in helping to better control antimicrobial resistance. Tropical Medicine and Infectious Disease. 2019;4(1):22. https://doi.org/10.3390/tropicalmed4010022
Gibson JS, Wai H, Oo SSML, Hmwe EMM, Wai SS, Htun LL, et al. Antimicrobials use and resistance on integrated poultry-fish farming systems in the Ayeyarwady Delta of Myanmar. Scientific Reports. 2020;10(1):16149. https://doi.org/10.1038/s41598-020-73076-2
Anyanwu MU, Jaja IF, Okpala COR, Jaja CJI, Oguttu JW, Chah KF, et al. Potential sources and characteristic occurrence of mobile colistin resistance (mcr) gene-harbouring bacteria recovered from the poultry sector: A literature synthesis specific to high-income countries. PeerJ. 2021;9:e11606. https://doi.org/10.7717/peerj.11606
Wang Y, Lyu N, Liu F, Liu WJ, Bi Y, Zhang Z, et al. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environment International. 2021;153:106534. https://doi.org/10.1016/j.envint.2021.106534
Xu S, Lu W, Qasim MZ. High-throughput characterization of the expressed antibiotic resistance genes in sewage sludge with transcriptional analysis. Ecotoxicology and Environmental Safety. 2020;205:111377. https://doi.org/10.1016/j.ecoenv.2020.111377
Yang Q, Tian T, Niu T, Wang P. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environmental Pollution. 2017 Oct 1;229:188–198. https://doi.org/10.1016/j.envpol.2017.05.073
Leungtongkam U, Thummeepak R, Tasanapak K, Sitthisak S. Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS One. 2018;13(12):e0208468. https://doi.org/10.1371/journal.pone.0208468
Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36. https://doi.org/10.1016/j.plasmid.2019.01.003
Karim MR, Zakaria Z, Hassan L, Mohd Faiz N, Ahmad NI. Antimicrobial resistance profiles and co-existence of multiple antimicrobial resistance genes in mcr-harbouring colistin-resistant enterobacteriaceae isolates recovered from poultry and poultry meats in Malaysia. Antibiotics (Basel). 2023;12(6):1060. https://doi.org/10.3390/antibiotics12061060
OIE. World Organisation for Animal Health. List of Antimicrobial Agents of Veterinary Importance. 2021, (Resolution No. XXVIII) Available from: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf
Belote BL, Tujimoto-Silva A, Hümmelgen PH, Sanches AWD, Wammes JCS, Hayashi RM, et al. Histological parameters to evaluate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter. Poultry Science. 2018;97(7):2287–2294. https://doi.org/10.3382/ps/pey064
Yang Y, Ashworth AJ, Willett C, Cook K, Upadhyay A, Owens PR, et al. Review of antibiotic resistance, ecology, dissemination, and mitigation in U.S. broiler poultry systems. Frontiers in Microbiology. 2019;10:2639. https://doi.org/10.3389/fmicb.2019.02639
Umair M, Orubu S, Zaman MH, Wirtz VJ, Mohsin M. Veterinary consumption of highest priority critically important antimicrobials and various growth promoters based on import data in Pakistan. PLoS One. 2022;17(9):e0273821. http://doi.org/10.1371/journal.pone.0273821
Basit MA, Kadir AA, Loh TC, Aziz SA, Salleh A, Zakaria ZA, et al. Comparative efficacy of selected phytobiotics with halquinol and tetracycline on gut morphology, ileal digestibility, cecal microbiota composition and growth performance in broiler chickens. Animals (Basel). 2020;10(11):2150. https://doi.org/10.3390/ani10112150
Habib MA, Haque MA, Islam MS, Liton MR. Effect of dietary Halquinol supplementation on the productive performances, carcass traits and blood profile of Sonali chicken. Asian Journal of Medical and Biological Research. 2020;5(4):316–323. https://doi.org/10.3329/ajmbr.v5i4.45270
Díaz Carrasco JM, Redondo EA, Pin Viso ND, Redondo LM, Farber MD, Fernández Miyakawa ME. Tannins and bacitracin differentially modulate gut microbiota of broiler chickens. BioMed Research International. 2018;2018:1879168. https://doi.org/10.1155/2018/1879168
Yu Y, Zhao H, Lin J, Li Z, Tian G, Yang YY, et al. Repurposing non-antibiotic drugs auranofin and pentamidine in combination to combat multidrug-resistant gram-negative bacteria. International Journal of Antimicrobial Agents. 2022;59(5)106582. https://doi.org/10.1016/j.ijantimicag.2022.106582
Aranda MIR, Gómez GAT, De Barros M, Dos Santos MH, De Oliveira LL, Pena JL, et al. Antimicrobial and synergistic activity of 2,2',4-trihydroxybenzophenone against bacterial pathogens of poultry. Frontiers in Microbiology. 2019;10:490. https://doi.org/10.3389/fmicb.2019.00490
Li BB, Zhi LL, Peng ZY, Ma XX, Li J. Contrasting distribution of antibiotic resistance genes and microbial communities in suspended activated sludge versus attached biofilms in an integrated fixed film activated sludge (IFAS) system. Science of the Total Environment. 2020;742:140481. https://doi.org/10.1016/j.scitotenv.2020.140481
Diarra MS, Silversides FG, Diarrassouba F, Pritchard J, Masson L, Brousseau R, et al. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Applied and Environmental Microbiology. 2007;73(20):6566–6576. https://doi.org/10.1128/AEM.01086-07
Yang C, Rehman MA, Yin X, Carrillo CD, Wang Q, Yang C, et al. Antimicrobial resistance phenotypes and genotypes of Escherichia coli isolates from broiler chickens fed encapsulated cinnamaldehyde and citral. Journal of Food Protection. 2021;84(8):1385–1399. https://doi.org/10.4315/JFP-21-033
Shen W, Chen Y, Wang N, Wan P, Peng Z, Zhao H, et al. Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Journal of Environmental Management. 2022;317:115362. https://doi.org/10.1016/j.jenvman.2022.115362
Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews. 2018;42(1):68–80. https://doi.org/0.1093/femsre/fux053
Xu F, Zeng X, Hinenoya A, Lin J. MCR-1 confers cross-resistance to bacitracin, a widely used in-feed antibiotic. mSphere. 2018;3(5):e00411-18. https://doi.org/10.1128/msphere.00411-18
Frost I, Laxminarayan R, McKenna N, Chai S, Joshi J. World Health Organization. Technical serie on primary health care: Antimicrobial resistance and primary health care. [Internet]. 2018;62p. Available from: https://iris.who.int/bitstream/handle/10665/326454/WHO-HIS-SDS-2018.56-eng.pdf
Agga GE, Kasumba J, Loughrin JH, Conte ED. Anaerobic digestion of tetracycline spiked livestock manure and poultry litter increased the abundances of antibiotic and heavy metal resistance genes. Frontiers in Microbiology. 2020;11:614424. https://doi.org/10.3389/fmicb.2020.614424
Ramos PI, Picão RC, Vespero EC, Pelisson M, Zuleta LF, Almeida LG, Gerber AL, Vasconcelos AT, Gales AC, Nicolás MF. Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae clinical isolate identified in Brazil. BMC Microbiology. 2012, 12:173. https://doi.org/10.1186/1471-2180-12-173
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Brazilian Animal Science/ Ciência Animal Brasileira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).