Ocorrência de genes de resistência a antibióticos em granjas avícolas localizadas no nordeste do Brasil

Autores

DOI:

https://doi.org/10.1590/1809-6891v26e-79298E

Resumo

O uso indevido de antibióticos na produção animal pode exercer pressão seletiva sobre cepas bacterianas, intensificando a disseminação de bactérias patogênicas e comensais portadoras de genes de resistência a antibióticos (GRAs). O objetivo deste estudo foi investigar a presença de GRAs em camas de frango provenientes de granjas avícolas localizadas no Estado de Sergipe, no Nordeste do Brasil. Um total de 14 amostras de cama de frango foram coletadas de doze fazendas e submetidas à extração de DNA total. A presença de GRAs foi testada por Reação em Cadeia da Polimerase (PCR) usando primers para principais classes de antibióticos. GRAs foram confirmados em todas as amostras, e a maior positividade para resistência foi obtida para tetraciclinas (tetA, tetM, and tetG), quinolonas (gyrA and qnrS), beta-lactâmicos (blaTEM), macrolídeos (ermB) e sulfonamidas (sul-1). O sequenciamento e a comparação com o banco de dados GenBank confirmaram a identidade dos GRAs. Algumas das sequências amplificadas por PCR eram semelhantes a fatores de resistência encontrados em bactérias Gram- positivo e Gramnegativo de diferentes espécies, principalmente enterobactérias. Além disso, foi observada semelhança para determinantes de resistência localizados tanto no cromossomo quanto em plasmídeos, transposons e integrons. Nossos resultados indicam o potencial da criação de aves para a disseminação ambiental de GRAs no Estado de Sergipe.

Downloads

Referências

van Cuong N, Kiet BT, Hien VB, Truong BD, Phu DH, Thwaites G, et al. Antimicrobial use through consumption of medicated feeds in chicken flocks in the Mekong Delta of Vietnam: A three-year study before a ban on antimicrobial growth promoters. PLoS One. 2021;16(4): e0250082. http://doi.org/10.1371/journal.pone.0250082

Langata LM, Maingi JM, Musonye HA, Kiiru J, Nyamache AK. Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Research Notes. 2019;12(1):22. https://doi.org/10.1186/s13104-019-4068-8

Farooq M, Smoglica C, Ruffini F, Soldati L, Marsilio F, Di Francesco CE. Antibiotic resistance genes occurrence in conventional and antibiotic-free poultry farming, Italy. Animals (Basel). 2022;12(18):2310. https://doi.org/10.3390/ani12182310

Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence - Implications for human health and treatment perspectives. EMBO Reports. 2020;21(12): e51034. https://doi.org/10.15252/embr.202051034

Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nature Reviews Microbiology. 2022;20(5):257–269. https://doi.org/10.1038/s41579-021-00649-x

Alalam H, Graf FE, Palm M, Abadikhah M, Zackrisson M, Boström J, et al. A high-throughput method for screening for genes controlling bacterial conjugation of antibiotic resistance. mSystems. 2020;5(6):e01226-20. https://doi.org/10.1128/mSystems.01226-20

Oladeinde A, Abdo Z, Zwirzitz B, Woyda R, Lakin SM, Press MO, et al. Litter commensal bacteria can limit the horizontal gene transfer of antimicrobial resistance to Salmonella in chickens. Applied and Environmental Microbiology. 2022;88(9):e0251721. https://doi.org/10.1128/aem.02517-21

Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in Gram-negative bacteria: From the cellular to the community level. Genes (Basel). 2020;11(11):1239. https://doi.org/10.3390/genes11111239

Lima T, Domingues S, Silva GJ Da. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Veterinary Sciences. 2020;7(3):110. https://doi.org/10.3390/vetsci7030110

Vumazonke S, Khamanga SM, Ngqwala NP. Detection of pharmaceutical residues in surface waters of the Eastern Cape Province. International Journal of Environmental Research and Public Health. 2020;17(11)4067. https://doi.org/10.3390/ijerph17114067

Ngogang MP, Ernest T, Kariuki J, Mouiche MMM, Ngogang J, Wade A, et al. Microbial contamination of chicken litter manure and antimicrobial resistance threat in an urban area setting in Cameroon. Antibiotics (Basel). 2021;10(1):20. https://doi.org/10.3390/antibiotics10010020

Wang L, Chai B. Fate of antibiotic resistance genes and changes in bacterial community with increasing breeding scale of layer manure. Frontiers in Microbiology. 2022;13:857046. https://doi.org/10.3389/fmicb.2022.857046

Oxendine A, Walsh AA, Young T, Dixon B, Hoke A, Rogers EE, et al. Conditions necessary for the transfer of antimicrobial resistance in poultry litter. Antibiotics (Basel). 2023;12(6):1006. https://doi.org/10.3390/antibiotics12061006

Chen Q, An X, Li H, Su J, Ma Y, Zhu YG. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environment International. 2016;92–93:1–10. https://doi.org/10.1016/j.envint.2016.03.026

Duan M, Gu J, Wang X, Li Y, Zhang R, Hu T, et al. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and Environmental Safety. 2019;180:114–122. https://doi.org/10.1016/j.ecoenv.2019.05.005

Fatoba DO, Abia ALK, Amoako DG, Essack SY. Rethinking manure application: Increase in multidrug-resistant enterococcus spp. in agricultural soil following chicken litter application. Microorganisms. 2021;9(5):885. https://doi.org/10.3390/microorganisms9050885

Lentz SAM. Atualização sobre Uso Racional de Antimicrobianos e Boas Práticas de Produção. Opas/Mapa. 2022;1–50. Available from: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/resistencia-aos-antimicrobianos/publicacoes/Apostila_AtualizaosobreUsoRacionaldeAntimicrobianoseBoasPrticasdeProduo.pdf

Brasil. Instrução Normativa No26, de 10 de julho de 2009. Ministério da Agricultura Pecuária e Abastecimento - MAPA. 2009;9. https://wikisda.agricultura.gov.br/dipoa_baselegal/in_9-2009_listeria.pdf

Brasil. Instrução Normativa No 45, De 22 De Novembro De 2016. Dou. 2016;4. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/legislacao/instrucao-normativa-no-45-de-22-de-novembro-de-2016.pdf

Brasil. Ministério da Saúde. Plano de Ação Nacional de Prevenção e Controle da Resistência aos Antimicrobianos no Âmbito da Saúde Única. 2019;1. https://bvsms.saude.gov.br/bvs/publicacoes/plano_prevencao_resistencia_antimicrobianos.pdf

antimicrobianos/plano-nacional-antimicrobianos-pan-br-14fev19-isbn.pdf/view

Rabello RF, Bonelli RR, Penna BA, Albuquerque JP, Souza RM, Cerqueira AMF. Antimicrobial resistance in farm animals in Brazil: An update overview. Animals (Basel). 2020;10(4):552. https://doi.org/10.3390/ani10040552

SENAI. Manual de Segurança e Qualidade para a Avicultura de Postura Manual de Segurança e Qualidade para a Avicultura de Postura. Embrapa. 2004;1–100.

Subirats J, Murray R, Scott A, Lau CHF, Topp E. Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. Science of the Total Environment. 2020;746:141113. https://doi.org/10.1016/j.scitotenv.2020.141113

Trindade, P. R. C. M., Dolabella, S. S., Jain, S., Nascimento, L. F. . de J., Sacramento, A. . G., Barbosa, F. H. F., & Teixeira Barbosa, A. A. (2024). Ocorrência e persistência de genes de resistência a antibióticos em estações de tratamento de esgoto em Aracaju/SE/Brasil. Scientia Plena, 20(10). https://doi.org/10.14808/sci. plena.2024.10620125. Limayem A, Micciche A, Nayak B, Mohapatra S. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing. Environmental Science and Pollution Research. 2018;25(1):704–711. https://doi.org/10.1007/s11356-017-0078-z

Limayem A, Micciche A, Nayak B, Mohapatra S. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing. Environmental Science and Pollution Research. 2018;25(1):704–711. https://doi.org/10.1007/s11356-017-0078-z

Cornejo J, Yevenes K, Avello C, Pokrant E, Maddaleno A, Martin BS, et al. Determination of chlortetracycline residues, antimicrobial activity and presence of resistance genes in droppings of experimentally treated broiler chickens. Molecules. 2018;23(6):1264. https://doi.org/10.3390/molecules23061264

Jia J, Guan Y, Cheng M, Chen H, He J, Wang S, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China. Science of the Total Environment. 2018;642:1136–1144. https://doi.org/10.1016/j.scitotenv.2018.06.149

Furlan JPR, dos Santos LDR, Moretto JAS, Ramos MS, Gallo IFL, Alves G de AD, et al. Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho dam disaster, Brazil. Science of the Total Environment. 2020;726:138100. https://doi.org/10.1016/j.scitotenv.2020.138100

Ayandiran TO, Falgenhauer L, Schmiede J, Chakraborty T, Ayeni FA. High resistance to tetracycline and ciprofloxacin in bacteria isolated from poultry farms in Ibadan, Nigeria. Journal of Infection in Developing Countries. 2018;12(6):462–470. https://doi.org/10.3855/jidc.9862

Collignon PJ, McEwen SA. One health-its importance in helping to better control antimicrobial resistance. Tropical Medicine and Infectious Disease. 2019;4(1):22. https://doi.org/10.3390/tropicalmed4010022

Gibson JS, Wai H, Oo SSML, Hmwe EMM, Wai SS, Htun LL, et al. Antimicrobials use and resistance on integrated poultry-fish farming systems in the Ayeyarwady Delta of Myanmar. Scientific Reports. 2020;10(1):16149. https://doi.org/10.1038/s41598-020-73076-2

Anyanwu MU, Jaja IF, Okpala COR, Jaja CJI, Oguttu JW, Chah KF, et al. Potential sources and characteristic occurrence of mobile colistin resistance (mcr) gene-harbouring bacteria recovered from the poultry sector: A literature synthesis specific to high-income countries. PeerJ. 2021;9:e11606. https://doi.org/10.7717/peerj.11606

Wang Y, Lyu N, Liu F, Liu WJ, Bi Y, Zhang Z, et al. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environment International. 2021;153:106534. https://doi.org/10.1016/j.envint.2021.106534

Xu S, Lu W, Qasim MZ. High-throughput characterization of the expressed antibiotic resistance genes in sewage sludge with transcriptional analysis. Ecotoxicology and Environmental Safety. 2020;205:111377. https://doi.org/10.1016/j.ecoenv.2020.111377

Yang Q, Tian T, Niu T, Wang P. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environmental Pollution. 2017 Oct 1;229:188–198. https://doi.org/10.1016/j.envpol.2017.05.073

Leungtongkam U, Thummeepak R, Tasanapak K, Sitthisak S. Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS One. 2018;13(12):e0208468. https://doi.org/10.1371/journal.pone.0208468

Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36. https://doi.org/10.1016/j.plasmid.2019.01.003

Karim MR, Zakaria Z, Hassan L, Mohd Faiz N, Ahmad NI. Antimicrobial resistance profiles and co-existence of multiple antimicrobial resistance genes in mcr-harbouring colistin-resistant enterobacteriaceae isolates recovered from poultry and poultry meats in Malaysia. Antibiotics (Basel). 2023;12(6):1060. https://doi.org/10.3390/antibiotics12061060

OIE. World Organisation for Animal Health. List of Antimicrobial Agents of Veterinary Importance. 2021, (Resolution No. XXVIII) Available from: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf

Belote BL, Tujimoto-Silva A, Hümmelgen PH, Sanches AWD, Wammes JCS, Hayashi RM, et al. Histological parameters to evaluate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter. Poultry Science. 2018;97(7):2287–2294. https://doi.org/10.3382/ps/pey064

Yang Y, Ashworth AJ, Willett C, Cook K, Upadhyay A, Owens PR, et al. Review of antibiotic resistance, ecology, dissemination, and mitigation in U.S. broiler poultry systems. Frontiers in Microbiology. 2019;10:2639. https://doi.org/10.3389/fmicb.2019.02639

Umair M, Orubu S, Zaman MH, Wirtz VJ, Mohsin M. Veterinary consumption of highest priority critically important antimicrobials and various growth promoters based on import data in Pakistan. PLoS One. 2022;17(9):e0273821. http://doi.org/10.1371/journal.pone.0273821

Basit MA, Kadir AA, Loh TC, Aziz SA, Salleh A, Zakaria ZA, et al. Comparative efficacy of selected phytobiotics with halquinol and tetracycline on gut morphology, ileal digestibility, cecal microbiota composition and growth performance in broiler chickens. Animals (Basel). 2020;10(11):2150. https://doi.org/10.3390/ani10112150

Habib MA, Haque MA, Islam MS, Liton MR. Effect of dietary Halquinol supplementation on the productive performances, carcass traits and blood profile of Sonali chicken. Asian Journal of Medical and Biological Research. 2020;5(4):316–323. https://doi.org/10.3329/ajmbr.v5i4.45270

Díaz Carrasco JM, Redondo EA, Pin Viso ND, Redondo LM, Farber MD, Fernández Miyakawa ME. Tannins and bacitracin differentially modulate gut microbiota of broiler chickens. BioMed Research International. 2018;2018:1879168. https://doi.org/10.1155/2018/1879168

Yu Y, Zhao H, Lin J, Li Z, Tian G, Yang YY, et al. Repurposing non-antibiotic drugs auranofin and pentamidine in combination to combat multidrug-resistant gram-negative bacteria. International Journal of Antimicrobial Agents. 2022;59(5)106582. https://doi.org/10.1016/j.ijantimicag.2022.106582

Aranda MIR, Gómez GAT, De Barros M, Dos Santos MH, De Oliveira LL, Pena JL, et al. Antimicrobial and synergistic activity of 2,2',4-trihydroxybenzophenone against bacterial pathogens of poultry. Frontiers in Microbiology. 2019;10:490. https://doi.org/10.3389/fmicb.2019.00490

Li BB, Zhi LL, Peng ZY, Ma XX, Li J. Contrasting distribution of antibiotic resistance genes and microbial communities in suspended activated sludge versus attached biofilms in an integrated fixed film activated sludge (IFAS) system. Science of the Total Environment. 2020;742:140481. https://doi.org/10.1016/j.scitotenv.2020.140481

Diarra MS, Silversides FG, Diarrassouba F, Pritchard J, Masson L, Brousseau R, et al. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Applied and Environmental Microbiology. 2007;73(20):6566–6576. https://doi.org/10.1128/AEM.01086-07

Yang C, Rehman MA, Yin X, Carrillo CD, Wang Q, Yang C, et al. Antimicrobial resistance phenotypes and genotypes of Escherichia coli isolates from broiler chickens fed encapsulated cinnamaldehyde and citral. Journal of Food Protection. 2021;84(8):1385–1399. https://doi.org/10.4315/JFP-21-033

Shen W, Chen Y, Wang N, Wan P, Peng Z, Zhao H, et al. Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Journal of Environmental Management. 2022;317:115362. https://doi.org/10.1016/j.jenvman.2022.115362

Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews. 2018;42(1):68–80. https://doi.org/0.1093/femsre/fux053

Xu F, Zeng X, Hinenoya A, Lin J. MCR-1 confers cross-resistance to bacitracin, a widely used in-feed antibiotic. mSphere. 2018;3(5):e00411-18. https://doi.org/10.1128/msphere.00411-18

Frost I, Laxminarayan R, McKenna N, Chai S, Joshi J. World Health Organization. Technical serie on primary health care: Antimicrobial resistance and primary health care. [Internet]. 2018;62p. Available from: https://iris.who.int/bitstream/handle/10665/326454/WHO-HIS-SDS-2018.56-eng.pdf

Agga GE, Kasumba J, Loughrin JH, Conte ED. Anaerobic digestion of tetracycline spiked livestock manure and poultry litter increased the abundances of antibiotic and heavy metal resistance genes. Frontiers in Microbiology. 2020;11:614424. https://doi.org/10.3389/fmicb.2020.614424

Ramos PI, Picão RC, Vespero EC, Pelisson M, Zuleta LF, Almeida LG, Gerber AL, Vasconcelos AT, Gales AC, Nicolás MF. Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae clinical isolate identified in Brazil. BMC Microbiology. 2012, 12:173. https://doi.org/10.1186/1471-2180-12-173

Publicado

2025-02-06

Como Citar

ALMEIDA, H. F. de; TRINDADE, P. R. C. M.; TEIXEIRA, C. R. V.; BRITO, C. O.; DOLABELLA, S. S.; JAIN, S.; MARTINS, M. P.; BARBOSA, A. A. Ocorrência de genes de resistência a antibióticos em granjas avícolas localizadas no nordeste do Brasil. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 26, 2025. DOI: 10.1590/1809-6891v26e-79298E. Disponível em: https://revistas.ufg.br/vet/article/view/79298. Acesso em: 27 mar. 2025.

Edição

Seção

ZOOTECNIA