Effects of Isomix® and virginiamycin on in vitro ruminal fermentation
DOI:
https://doi.org/10.1590/1809-6891v26e-81135EAbstract
Additives improve cattle feed efficiency by altering microbial populations. This study evaluated the effects of varying doses and the interaction between two additives on in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (IVNDFD), and ruminal fermentation parameters using rumen fluid from fistulated cows. Diets with a 70:30 forage-to-concentrate ratio were incubated for 48 h using the Tilley and Terry method, with Brachiaria decumbens as the forage and a concentrate composed of corn meal, soybean meal, and urea. The additives tested were Isomix® (from 0.0 to 4.8 % of diet dry matter) and virginiamycin (from 0.0 to 0.80 %). The significant effects (P<0.05) of virginiamycin included increased pH, NH3, and soluble protein (SP) and decreased IVDMD, IVNDFD, microbial protein (MP), and volatile fatty acids (VFA). Isomix had no significant effects on these variables, but increased isobutyrate concentration (P < 0.05). Additive interactions affected acetate, propionate, butyrate, isovalerate, and the acetate:propionate ratio (P<0.05). While neither additive improved digestibility, Isomix enhanced propionate production and reduced the acetate:propionate ratio, potentially improving energy balance and performance. Further research is recommended, particularly on diets with low protein and urea supplementation in tropical grazing systems.
Keywords: Branched-chain volatile fatty acids; in vitro digestibility; tropical pastures.
Downloads
References
Feng YL. Ruminant nutrition. Beijing, China: Science Press. 2004.636p.
Val Neto ER, Lana RP, Val HN, Leao MI, Mancio AB. Evaluation of performance of lactating dairy. Journal of Animal Science. 2010; 88.
Dilorenzo N. Manipulation of the rumen microbial environment to improve performance of beef cattle. Proceedings of the 22nd Florida Ruminant Nutrition Symposium. North Florida Research and Education Center, University of Florida. 2011. 118-132p.
Callaway TR, Edrington TS, Rychlik JL, Genovese KJ, Poole TL, Jung YS, et al. Ionophores: their use as ruminant growth promotants and impact on food safety. Current Issues in Intestinal Microbiology. 2003; 4 (2): 43-51. Available at: https://pubmed.ncbi.nlm.nih.gov/14503688/
Santos J, Rocha V, Campos T, Gomes R, Napar P, Matanna H, Silvia F, Braga R. Suplementação com virginiamicina e monensina em dietas de vacas leiteiras com alta inclusão de concentrado. Pubvet. 2019; 13 (12): 1- 13. doi: https://doi.org/10.31533/pubvet.v13n12a480.1-13
Rogers JA, Branine ME, Miller CR, Wray MI, Bartle SJ, Preston RL, Gill DR, Pritchard RH, Stilborn RP, Bechtol DT. Effects of dietary virginiamycin on performance and liver abscess incidence in feedlot cattle. Journal of Animal Science. 1995; 73(1): 9-12. doi: https://doi.org/10.2527/1995.7319
Wilson DB. Three microbial strategies for plant cell wall degradation. Ann. N. Y. Acadecimc Science.2008; 1125: 289-297. doi: https://doi.org/10.1196/annals.1419.026
Roman-Garcia, Y., Mitchell, K. E., Denton, B. L., Lee, C., Socha, M. T., Wenner, B. A., & Firkins, J. L. (2021). Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. II: Relation with solid passage rate and pH on neutral detergent fiber degradation and microbial function in continuous culture. Journal of Dairy Science, 104(9), 9853–9867. https://doi.org/10.3168/jds.2021-20335
Mcdougall EL. Studies on ruminant saliva. The composition and output of sheep's saliva. The Biochemical journal. 1949; 43: 99-109. Disponível em: https://pubmed.ncbi.nlm.nih.gov/16748377/
Tilley J, Terry R. A two-stage technique for the in vitro digestion of forage crops. Journal British Grassland Society. 1963; 18 (2): 104-111. doi: https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Silva BC, Pacheco MVC, Godoi LA, Alhadas HM, Pereira JMV, Rennó LN, et al. Reconstituted and ensiled corn or sorghum grain: Impacts on dietary nitrogen fractions, intake, and digestion sites in young Nellore bulls. PLoS ONE. 2020; 15(8): e0237381. https://doi.org/10.1371/journal.pone.0237381
Mertens D. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal AOAC International. 2002; 85 (6): 1217-1240.
Detmann E, Souza M, Valadares Filho SC, Queiroz AC Berchielli TT, Saliba E, Cabral L, Pina L, Ladeira M, Azevedo J. Métodos para análise de alimentos. Suprema: Visconde do Rio Branco. 2012; p,204. ISBN 978-65-995122-2-3
Siegfried R, Ruckemman H, Stumpf G. Method for the determination of organic-acids in silage by high-performance liquid-chromatography. Landwirtschaftliche Forschung. 1984; 37(3-4): 298-304. URL: https://api.semanticscholar.org/CorpusID:209722138
Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clinical chemistry. 1962; 8(2); 130-132. doi: https://doi.org/10.1093/clinchem/8.2.130
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976; 72(1-2): 248-254. doi: https://doi.org/10.1006/abio.1976.9999
SAS. Statistical Analysis System for windows. Release 8.01, SAS Institute Inc, Cary, NC, USA. 2000.
Roman Y. Assessing Dietary Conditions Influencing the Requirements by Rumen Bacteria for Branched Chain Volatile Fatty Acids. These of doctorate. Animal Science. The Ohio State University. 2019. Disponível em: http://rave.ohiolink.edu/etdc/view?acc_num=osu1557171743925883
Mackie RI, White BA. Recent advances in rumen microbial ecology and metabolism: Potential impact on nutrient output. Journal of Dairy Science. 1990; 73(10): 2971 – 2995. doi: https://doi.org/10.3168/jds.S0022-0302(90)78986-2
Liu Q, Wang C, Liu Q, Guo G, Huo W, Zhang Y, Pei C, Zhang S. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. Animal. 2018; 12 (10), 2071–2079. doi: https://doi.org/10.1017/S1751731118000113
Zhang HL, Chen L, Xia, Y. Effects of branched-chain amino acids on in vitro ruminal fermentation of wheat straw. Asian-Australasian Journal of Animal Sciences. 2013; 26 (4): 523–528. doi: https://doi.org/10.5713/ajas.2012.12539
Suryapratama W, Suhartati FM. Effect of supplementation of branched chain fatty acid on colony of ruminal bacteria and cell of protozoa. Journal of Animal Production. 2009; 11(2): 129–134. ISSN 2541-5875. Disponível em: http://www.animalproduction.net/index.php/JAP/article/view/234
a. Wang C, Liu Q, Guo G, Huo W, Zhang Y, Pei C, Zhang, S. Effects of rumen-protected folic acid and branched-chain volatile fatty acids supplementation on lactation performance, ruminal fermentation, nutrient digestion and blood metabolites in dairy cows. Animal Feed Science and Technology. 2018; 99(13):5826-5833. doi: https://doi.org/10.1002/jsfa.9853.
b. Neto, ER. Branched-chain amino acids in cattle nutrition. (Dissertação). Viçosa-MG: Mestrado em Zootecnia, Universidade Federal de Viçosa; 2009. Disponível em: http://locus.ufv.br/handle/123456789/5956
Yang C. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. American Dairy Science Association. 2002; 85: 1183-1190. doi: https://doi.org/10.3168/jds.S0022-0302(02)74181-7
Liu Q, Wang C, Liu Q, Guo G, Huo W, Zhang Y, Pei C, Zhang S. Effects of branched-chain volatile fatty acids and fibrolytic enzyme on rumen development in pre- and post-weaned Holstein dairy calves. Animal Biotechnology. 2019; 31 (6): 512–519. doi: https://doi.org/10.1080/10495398.2019.1633340
Maciel ICF, Saturnino HM, Barbosa FA, Malacco VMR, Andrade JMC, Maia GHB, Costa PM. Suplementação com virginiamicina e monensina sódica para bovinos de corte a pasto. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2019; 71, 1999-2008. doi: https://doi.org/10.1590/1678-4162-10659
Guo T, Wang J, Liu K, Wang J, Li D, Luan S, Huao X. Evaluation of the microbial population in ruminal fluid using time PCR in steers. Journal of animal Science. 2010; 55(7): 276-285, 2010. doi: https://doi.org/10.17221/74/2009-CJAS
Thorniley GR, Boyce MD, Rowe JB. Changes in feed intake and digestibility in sheep given virginiamycin. Australian Journal of Agricultural Research. 1996; 47(4): 539–544. doi: https://doi.org/10.1071/AR9960539
Oliveira IS, de Pauda D, Queiroz A, Macedo B, Garcia D, Eloisa I, Weich R. Salinomycin and virginiamycin for lactating cows supplemented on pasture. Scientia Agricola.2015; 72(4): 285–290. doi: https://doi.org/10.1590/0103-9016-2013-0401
Silva JSS, Rocha VM, Campos T, Gomes R, Nazar PV, Mattana H, Braga R. Suplementação com virginiamicina e monensina em dietas de vacas leiteiras com alta inclusão de concentrado. Pubvet. 2020; 13 (12). doi: https://doi.org/10.31533/pubvet.v13n12a480.1-13
Ferreira SF, Resende J, Pádua, J, Oliveira U, Freitas M, Gomes R. Use of virginiamycin and salinomycin in the diet of beef cattle reared under grazing during the rainy season: Performance and ruminal metabolism. Ciência Animal Brasileira. 2019; 20, 1–10. doi: https://doi.org/10.1590/1809-6891v20e-26867
Satter LD, Slyter LL. Effect of ammonia concentration of rumen microbial protein production in vitro. The British journal of nutrition.1974; 32 (2): 199-208. doi: https://doi.org/10.1079/bjn19740073
Hoover WH. Chemical factors involved in ruminal fiber digestion. Journal of dairy science.1986; 69(10): 2755–2766. doi: https://doi.org/10.3168/jds.S0022-0302(86)80724-X
Ferreira SF, Resende J, Padua J, Oliveira U, Sales M, Souza A, Aparecido E, Grandini, D. Desempenho e metabolismo ruminal em bovinos de corte em sistema de pastejo no período seco do ano recebendo virginiamicina na dieta. Semina: Ciências Agrárias.2015; 36(3): 2067–2078. doi: https://doi.org/10.5433/1679-0359.2015v36n3Supl1p2067
Salinas-Chavira, Lenin J, Ponce U, Sanchez N, Torrentera RA. Lenin. Comparative effects of virginiamycin supplementation on characteristics of growth-performance, dietary energetics, and digestion of calf-fed Holstein steers. Journal of Animal Science.2009; 87(12): 4101–4108. doi: https://doi.org/10.2527/jas.2009-1959
Moreira S, Pereira CB, Azevedo AC, Montavani H. Effects of Bovicin HC5 and Virginiamycin on in vitro Ruminal Fermentation and Microbial Community Composition. Journal of Agricultural Science. 2018; 10(8): 156. doi: https://doi.org/10.5539/jas.v10n8p156
Costa J, Fernandes HJ, Silva AG, Rosa EP, Santos Y. Homeopathic additives and virginiamycin® in grazing beef cattle. Revista Ciência Agronômica. 2020; 51 (2). doi https://doi.org/10.5935/1806-6690.20200026
Neto JA, Oliveira I, Moretti M, Siqueira G. Determining the optimal dose of virginiamycin for ruminal parameters and performance of Nellore cattle on pasture. Semina: Ciencias Agrarias. 2018; 39(4): 1749–1758. doi: https://doi.org/10.5433/1679-0359.2018v39n4p1749
Costa JP, Jesus R, Oliveira A, Resende F, Siqueira G, Malheiros E. Does virginiamycin supplementation affect the metabolism and performance of Nellore bulls grazing under low and high gain rates? Animal Science Journal. 2018; 89 (10): 1432–1441. doi: https://doi.org/10.1111/asj.13052
National Research Council (NRC). Nutrient requirements of beef cattle. 7th ed. Washington, D.C.: National Academy Press. 1996.
Souza MA, Detmann E, Paulino MF, Sampaio CB, Lazzarini I,Valadares-Filho SC. .Intake, digestibility and rumen dynamics of neutral detergent fibre in cattle fed low-quality tropical forage and supplemented with nitrogen and/or starch. Tropical animal health and production. 2010; 42(6): 1299–1310. doi: https://doi.org/10.1007/s11250-010-9566-6
Coe ML, Nagaraja TG, SunY, Wallace N, Kemp K, Hutcheson J. Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. Journal of Animal Science.1999; 77 (8): 2259–2268. doi: https://doi.org/10.2527/1999.7782259x
Cummins KA, Papas AH. Effect of Isocarbon-4 and Isocarbon-5 Volatile Fatty Acids on Microbial Protein Synthesis and Dry Matter Digestibility In Vitro. Journal of Dairy Science. 1985; 68(10): 2588–2595. doi: https://doi.org/10.3168/jds. S0022-0302(85)81141-3
Clayton EH, Lean IJ, Rowe JB, Cox J. Effects of Feeding Virginiamycin and Sodium Bicarbonate to Grazing Lactating Dairy Cows. Journal of Dairy Science. 1999; 82 (7): 1545–1554. doi: https://doi.org/10.3168/jds.S0022-0302(99)75382-8
Mccollum FT, Kim YK, Owens FN. Influence of supplemental four- and five-carbon volatile fatty acids on forage intake and utilization by steers. Journal of Animal Science. 1987; 65 (6): 1674–1679. doi: https://doi.org/10.2527/jas1987.6561674x
Liu Q, Wang, C, Pei C, Li H, Wang Y, Zhang S, Zhang Y, He J, Wang H, Yang W, Bai Y, Shi Z, Liu X. Effects of isovalerate supplementation on microbial status and rumen enzyme profile in steers fed on corn stover based diet. Livestock Science.2014; 161: 60–68. doi: https://doi.org/10.1016/j.livsci.2013.12.034
Wang C, Liu Q, Zhang Y, Pei C, Zhang S, Wang Y, Yang W, Bai Y, Shi Z, Liu X. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers. Journal of Animal Physiology and Animal Nutrition.2015; 99 (1): 123–131. doi: https://doi.org/10.1111/jpn.12191
Zhang YL, Liu Q, Wang C, Pei C, Li H, Wang Y, Yang W, Bai Y, Shi Z, Liu X. Effects of supplementation of Simmental steers with 2-methylbutyrate on rumen microflora, enzyme activities and methane production. Animal Feed Science and Technology. 2015; 199, 84–92. doi: https://doi.org/10.1016/j.anifeedsci.2014.11.003
Liu Q, Wang C, Huang Y, Dong K, Yang, W, Zhang S, Wang H. Effects of isovalerate on ruminal fermentation, urinary excretion of purine derivatives and digestibility in steers. Journal of Animal Physiology and Animal Nutrition. 2009; 93(6): 716–725. doi: https://doi.org/10.1111/j.1439-0396.2008.00861.x
Lana RP, Russell JB. Effect of forage quality and monensin on the ruminal fermentation of fistulated cows fed continuously at a constant intake. Journal of animal Science. 1997; 75 (1): 224-229. doi: https://doi.org/10.2527/1997.751224x
Wolin M.J. Theoretical rumen fermentation balance. Journal of Dairy Science. 1960; 43 (10):1452–1459. doi: https://doi.org/10.3168/jds.S0022-0302(60)90348-9
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Brazilian Animal Science/ Ciência Animal Brasileira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Data statement
-
The research data is available on demand, condition justified in the manuscript























