Avaliação da suplementação de plectasina nas características morfométricas do intestino delgado, perfil sanguíneo e desempenho de frangos de corte
DOI:
https://doi.org/10.1590/1809-6891v26e-80624EResumo
Peptídeos antimicrobianos, como a plectasina, foram propostos como substitutos adequados para antibióticos promotores de crescimento em animais de produção. Entretanto, sua eficácia nas condições locais das Filipinas ainda não foi determinada. Este estudo foi conduzido para avaliar a eficácia da plectasina no desempenho do crescimento, nas características morfométricas do intestino delgado e em parâmetros sanguíneos de frangos de corte. Trezentos frangos de corte da linhagem Ross de um dia de idade foram alocados aleatoriamente utilizando um delineamento em blocos completos casualizados, tendo o peso inicial como fator de bloqueio, nos seguintes grupos de tratamento: controle negativo (T1); 250 ppm de enramicina ou controle positivo (T2); 150 ppm de plectasina (T3); 300 ppm de plectasina (T4); e 450 ppm de plectasina (T5). A suplementação de plectasina a 150 ppm durante a fase de terminação melhorou o desempenho de crescimento dos frangos de corte (P<0,05), aumentando a taxa de conversão alimentar em 1,89±0,12 e aumentando o ganho médio diário (80,68±5,40g). O consumo médio diário de ração de todos os grupos de tratamento foi comparável durante todas as fases de alimentação. No entanto, a suplementação não afetou as medidas morfométricas do intestino delgado e os níveis séricos de glicose, triglicerídeos e colesterol. Esse estudo indica que o peptídeo antimicrobiano plectasina tem efeitos benéficos sobre o desempenho do crescimento e melhora a eficiência da utilização de nutrientes sem interromper as funções fisiológicas normais.
Palavras-chave: plectasina; perfil sanguíneo; desempenho; morfologia intestinal; frangos de corte.
Downloads
Referências
Philippine Statistics Authority. Performance of Philippine Agriculture- October to december 2017. 2018;(January 2019):1.
Garcia SN. The Philippine Poultry Broiler Industry Roadmap (2022-2040). Department of Agriculture - Bureau of Agricultural Research through the UPLB Foundation, Inc. in collaboration with the Philippine Council for Agriculture and Fisheries; 2022. 93 p.
Costa MC, Bessegatto JA, Alfieri AA, Weese JS, Filho JAB, Oba A. Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS One. 2017;12(2):1–13. Available from: https://doi.org/10.1371/journal.pone.0171642
Ventola CL. The Antibiotic Resistance Crisis (Part 1: Causes and Threats). P & T. 2015;40(4):277–83. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4378521/
Lindmeier C. World Health Organization. 2017. Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. Available from: https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance
Xiao H, Shao F, Wu M, Ren W, Xiong X, Tan B, et al. The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol. 2015;6(1):1–6. Available from: https://doi.org/10.1186/s40104-015-0018-z
Wang S, Zeng X, Yang Q, Qiao S. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci. 2016;17(5). Available from: https://doi.org/10.3390/ijms17050603
Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sönksen CP, Ludvigsen S, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature. 2005;437(7061):975–80. Available from: https://doi.org/10.1038/nature04051
Ramchandani NS V., Paraso MG V., Collantes TMA, dela Cruz JF. Histopathological features of the small intestines and quantification of lactic acid bacteria of broiler chickens supplemented with plectasin. Ciência Animal Brasileira. 2024;25. Available from: https://doi.org/10.1590/1809-6891v25e-78210E
Hao Y, Teng D, Mao R, Yang N, Wang J. Site Mutation Improves the Expression and Antimicrobial Properties of Fungal Defense. Antibiotics. 2023;12(8). Available from: https://doi.org/10.3390/antibiotics12081283
Zhang X, Zhao Q, Wen L, Wu C, Yao Z, Yan Z, et al. The Effect of the Antimicrobial Peptide Plectasin on the Growth Performance, Intestinal Health, and Immune Function of Yellow-Feathered Chickens. Front Vet Sci. 2021;8(June):1–14. Available from: https://doi.org/10.3389/fvets.2021.688611
AOAC. Official methods of analysis. 15. Association of Official Analytical Chemists, Washington, DC: AOAC.; 1990.
Balan P, Han KS, Rutherfurd SM, Singh H, Moughan PJ. Orally administered ovine serum immunoglobulins influence growth performance, organ weights, and gut morphology in growing rats. Journal of Nutrition. 2009;139(2):244–9. Available from: https://doi.org/10.3945/jn.108.099630
Agazzi A, Perricone V, Zorini FO, Sandrini S, Mariani E, Jiang XR, et al. Dietary mannan oligosaccharides modulate gut inflammatory response and improve duodenal villi height in post-weaning piglets improving feed efficiency. Animals. 2020;10(8):1–14. Available from: https://doi.org/10.3390/ani10081283
Dong L, Li Y, Zhang Y, Zhang Y, Ren J, Zheng J, et al. Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Sci Rep. 2023;13(1):1–14. Available from: https://doi.org/10.1038/s41598-023-37867-7
Jin Z, Yang YX, Choi JY, Shinde PL, Yoon SY, Hahn TW, et al. Potato (Solanum tuberosum L. cv. Gogu valley) protein as a novel antimicrobial agent in weanling pigs. J Anim Sci. 2008;86(7):1562–72. Available from: https://doi.org/10.2527/jas.2007-0414
Ma JL, Zhao LH, Sun DD, Zhang J, Guo YP, Zhang ZQ, et al. Effects of Dietary Supplementation of Recombinant Plectasin on Growth Performance, Intestinal Health and Innate Immunity Response in Broilers. Probiotics Antimicrob Proteins. 2020;12(1):214–23. Available from: https://doi.org/10.1007/s12602-019-9515-2
Wan J, Li Y, Chen D, Yu B, Chen G, Zheng P, et al. Recombinant plectasin elicits similar improvements in the performance and intestinal mucosa growth and activity in weaned pigs as an antibiotic. Anim Feed Sci Technol. 2016;211:216–26. Available from: https://doi.org/10.1016/j.anifeedsci.2015.12.003
Wen LF, He JG. Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. British Journal of Nutrition. 2012;108(10):1756–63. Available from: https://doi.org/10.1017/s0007114511007240
Xiong X, Yang HS, Li L, Wang YF, Huang RL, Li FN, et al. Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms. Livest Sci. 2014;167(1):206–10. Available from: https://doi.org/10.1016/j.livsci.2014.04.024
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol. 2021;11(June):1–26. Available from: https://doi.org/10.3389/fcimb.2021.668632
Zhang QY, Yan Z Bin, Meng YM, Hong XY, Shao G, Ma JJ, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8(1):1–25. Available from: https://doi.org/10.1186/s40779-021-00343-2
Arakaki M, Li L, Kaneko T, Arakaki H, Fukumura H, Osaki C, et al. Personalized nutritional therapy based on blood data analysis for malaise patients. Nutrients. 2021;13(10):1–11. Available from: https://doi.org/10.3390/nu13103641
Dong XQ, Zhang DM, Chen YK, Wang QJ, Yang YY. Effects of antimicrobial peptides (AMPs) on blood biochemical parameters, antioxidase activity, and immune function in the common carp (Cyprinus carpio). Fish Shellfish Immunol. 2015;47(1):429–34. Available from: https://doi.org/10.1016/j.fsi.2015.09.030
Wang JH, Wu CC, Feng J. Effect of dietary antibacterial peptide and zinc-methionine on performance and serum biochemical parameters in piglets. Czech Journal of Animal Science. 2011;56(1):30–6. Available from: https://doi.org/10.17221/341/2009-CJAS
Bao H, She R, Liu T, Zhang Y, Peng KS, Luo D, et al. Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poult Sci. 2009;88(2):291–7. Available from: https://doi.org/10.3382/ps.2008-00330
Li S, Chi SY, Cheng X, Wu C, Xu Q, Qu P, et al. Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides. Aquac Rep. 2020;16(December 2019):100252. Available from: https://doi.org/10.1016/j.aqrep.2019.100252
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Ciência Animal Brasileira / Brazilian Animal Science

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
Declaração de dados
-
Os dados de pesquisa estão disponíveis sob demanda, condição justificada no manuscrito





















