In vitro antimicrobial activity of brazilian native fruit pomace extracts and essential oils against multidrug-resistant Pseudomonas aeruginosa of animal origin

Authors

DOI:

https://doi.org/10.1590/1809-6891v26e-82765E

Abstract

Pseudomonas aeruginosa is a multidrug-resistant pathogen of growing concern in both human and veterinary medicine. Its increasing resistance profile, including that of animal-derived strains, necessitates alternative antimicrobial strategies within the One Health approach. This study evaluated the in vitro antimicrobial activities of four native Brazilian fruit pomace extracts (guabiroba, uvaia, araçá, and butiá) and four commercial essential oils (cinnamon, clove, ginger, and thyme) against clinical P. aeruginosa isolates obtained from domestic animals. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) were determined using the Kirby–Bauer disk diffusion method and a 96-well plate-based microdilution assay, respectively. The pomace extracts of guabiroba and uvaia showed inhibitory activity against 57.4 % of the tested isolates, whereas araçá and butiá exhibited no detectable effects. Cinnamon oil was the only compound that inhibited all isolates in both assays, with MIC values ranging from 4.88 to 9.70 µg/mL. The clove and thyme oils showed limited activity, whereas the ginger oil was largely ineffective. These findings highlight the potential of cinnamon oil as an antimicrobial candidate and suggest that native fruit residues may represent valuable, sustainable resources. Future studies should focus on investigating the mechanisms of action, synergistic effects, and in vivo efficacy of these compounds to support the development of phytotherapeutic alternatives against multidrug-resistant P. aeruginosa strains.

Downloads

Download data is not yet available.

References

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances. 2019;37(1):177-92. http://doi.org/10.1016/j.biotechadv.2018.11.013

Pottier M, Castagnet S, Gravey F, Leduc G, Sévin C, Petry S, et al. Antimicrobial resistance and genetic diversity of Pseudomonas aeruginosa strains isolated from equine and other veterinary samples. Pathogens. 2022;12(1):64. http://doi.org/10.3390/pathogens12010064

Hernando-Amado S, Martínez JL. Antimicrobial Resistance in Pseudomonas aeruginosa. Microorganisms. 2023;11(3):744. http://doi.org/10.3390/microorganisms11030744

Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International. 2016;2475067. http://doi.org/10.1155/2016/2475067

World Health Organization (WHO). WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017 [cited 2025 Feb 26]. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

Plókarz D, Rypula K. A one health perspective on the human-pets Pseudomonas aeruginosa transmission. Applied Microbiology and Biotechnology. 2022;8(4):1-3. https://doi.org/10.1093/jambio/lxaf037

Santos LR, Alía A, Martin I, Gottardo FM, Rodrigues LB, Borges KA, et al. Antimicrobial activity of essential oils and natural plant extracts against Listeria monocytogenes in a dry-cured ham-based model. Journal of the Science of Food and Agriculture. 2022;102(4):1729-35. http://doi.org/10.1002/jsfa.11475

Kavanaugh NL, Ribbeck K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology. 2012;78(11):4057-61. http://doi.org/10.1128/AEM.07499-11

Coșeriu RL, Vintilă C, Pribac M, Mare AD, Ciurea CN, Togănel RO, et al. Antibacterial effect of 16 essential oils and modulation of mex efflux pumps gene expression on multidrug-resistant Pseudomonas aeruginosa clinical isolates: is cinnamon a good fighter? Antibiotics. 2023;12(1):163. http://doi.org/10.3390/antibiotics12010163

Diniz AF, Santos B, Nóbrega LMMO, Santos VRL, Mariz WS, Cruz PSC, et al. Antibacterial activity of Thymus vulgaris (thyme) essential oil against strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus saprophyticus isolated from meat product. Brazilian Journal of Biology. 2023;83:e275306. http://doi.org/10.1590/1519-6984.275306

Santos LF, Biduski B, Lopes ST, Bertolin TE, Santos LR. Brazilian native fruit pomace as a source of bioactive compounds on starch-based films: Antimicrobial activities and food simulator release. International Journal of Biological Macromolecules. 2023;242(Pt 2):124900. http://doi.org/10.1016/j.ijbiomac.2023.124900

Brack P, Köhler M, Corrêa CA, Ardissone RE, Sobral MEG, Kinupp VF. Native fruits of Rio Grande do Sul, Brazil: richness and potential as food. Rodriguésia. 2020;71:1-11. http://doi.org/10.1590/2175-7860202071091

Brasil. Ministério da Educação. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro – Região Sul. Brasília, 2011.

Pereira ES, Vinholes J, Franzon RC, Dalmazo G, Vizzotto M, Nora L. Psidium cattleianum fruits: A review on its composition and bioactivity. Food Chemistry. 2018;258:95–103. http://doi.org/10.1016/j.foodchem.2018.03.024

Pereira ES, Vinholes JR, Camargo TM, Nora FR, Crizel RL, Chaves F, et al. Characterization of araçá fruits (Psidium cattleianum Sabine): Phenolic composition, antioxidant activity and inhibition of α-amylase and αglucosidase. Food Bioscience. 2020;37:100665. http://doi.org/10.1016/j.fbio.2020.100665

Beskow GT, Hoffmann JF, Teixeira AM, Fachinello JC, Chaves FC, Rombaldi CV. Bioactive and yield potential of jelly palms (Butia odorata Barb. Rodr.). Food Chemistry. 2015;172:699-704. http://doi.org/10.1016/j.foodchem.2014.09.111

Tambara AL, da Silveira ÉC, Soares ATG, Salgueiro WG, Rodrigues CF, Boldori JR, et al. Butiá fruit extract (Butia eriospatha) protects against oxidative damage and increases lifespan on Caenorhabditis elegans. Journal of Food Biochemistry. 2020;44(3):e13139. http://doi.org/10.1111/jfbc.13139

Santos SS, Lima JJ, Petkowicz CLO, Candido LM. Chemical characterization and evaluation of the antioxidant potential of gabiroba jam (Campomanesia xanthocarpa Berg). Acta Scientiarum. Agronomy. 2013;35(1):73-82. http://doi.org/10.4025/actasciagron.v35i1.14389

Jacomino AP, Silva AP, Freitas TP, Morais VSP. Uvaia - Eugenia pyriformis Cambess. In: Rodrigues S, Silva EO, Brito ES. Exotic Fruits – Reference Guide. 1st ed. London: Academic Press; 2018. p. 435-438.

Gomes BO, Santos KC, Carvalho GR, Bitencourt BS, Guedes JS, Augusto PED. Uvaia fruit (Eugenia pyriformis Cambess) drying: ethanol as pre-treatment, convective drying kinetics and bioactive compounds. Journal of Food Processing and Preservation. 2022;46(2):e16284. http://doi.org/10.1111/jfpp.16284

Pereira ES, Vinholes JR, Camargo TM, Raphaelli CO, Ferri NML, Nora L, et al. Araçá (Psidium cattleianum Sabine): bioactive compounds, antioxidant activity and pancreatic lipase inhibition. Ciência Rural. 2022;51(11):e20200778. http://doi.org/10.1590/0103-8478cr20200778

Komaki A, Hoseini F, Shahidi S, Baharlouei N. Study of the effect of extract of Thymus vulgaris on anxiety in male rats. Journal of Traditional and Complementary Medicine. 2015;6(3):257-61. http://doi.org/10.1016/j.jtcme.2015.01.001

Al-Asmari AK, Athar MT, Al-Faraidy AA, Almuhaiza MS. Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market. Asian Pacific Journal of Tropical Biomedicine. 2017;7(2):147–50. http://doi.org/10.1016/j.apjtb.2016.11.023

Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Li HB. Antibacterial and antifungal activities of spices. International Journal of Molecular Sciences. 2017;18(16):1283. http://doi.org/10.3390/ijms18061283

Silvestri JDF, Paroul N, Czyewski E, Lerin L, Rotava I, Cansian RL, et al. Perfil da composição química e atividades antibacteriana e antioxidante do óleo essencial do cravo-da-índia (Eugenia caryophyllata Thunb.). Revista Ceres. 2010.57(5):589–94 https://doi.org/10.1590/S0034-737X2010000500004

Ashraf K, Ahmad A, Chaudhary A, Mujeeb M, Ahmad S, Amir M, et al. Genetic diversity analysis of Zingiber officinale Roscoe by RAPD collected from subcontinent of India. Saudi Journal of Biological Sciences. 2014;21(2):159-65. http://doi.org/10.1016/j.sjbs.2013.09.005

Akinyemi AJ, Adedara IA, Thome GR, Morsch VM, Rovani MT, Mujica LKS, et al. Dietary supplementation of ginger and turmeric improves reproductive function in hypertensive male rats. Toxicology Reports. 2015;2:1357-66. http://doi.org/10.1016/j.toxrep.2015.10.001

Mahmoudvand H, Mahmoudvand H, Oliaee RT, Kareshk AT, Mirbadie SR, Aflatoonian MR. In vitro protoscolicidal effects of Cinnamomum zeylanicum essential oil and its toxicity in mice. Pharmacom Magazine. 2017;13(Suppl 3):S652-7. http://doi.org/10.4103/pm.pm_280_16

Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Chemical composition of the flower oil of Cinnamomum zeylanicum blume. Journal of Agricultural and Food Chemistry. 2000;48(9):4294-5. http://doi.org/10.1021/jf991395c

Martins E, Maboni G, Battisti R, da Costa L, Selva HL, Levitzki ED, et al. High rates of multidrug resistance in bacteria associated with small animal otitis: A study of cumulative microbiological culture and antimicrobial susceptibility. Microbial Pathogenesis. 2022;165:105399. http://doi.org/10.1016/j.micpath.2022.105399

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 4th ed. CLSI supplement VET08.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 2012;18(3):268-81. http://doi.org/10.1111/j.1469-0691.2011.03570.x

Centers for Disease Control and Prevention (CDC). Multidrug-resistant Pseudomonas aeruginosa. 2019 [cited 2024 Feb 23]. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf

Fernandes MR, Sellera FP, Moura Q, Carvalho MPN, Rosato PN, Cerdeira L, et al. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil. Emerging Infectious Diseases. 2018;24(6):1160-2. http://doi.org/10.3201/eid2406.180335

Coyne AJK, El Ghali A, Holger D, Rebold N, Rybak MJ. Therapeutic strategies for emerging multidrug-resistant Pseudomonas aeruginosa. Infectious Diseases and Therapy. 2022;11(2):661-82. http://doi.org/10.1007/s40121-022-00591-2

Silva V, Silva A, Ribeiro J, Aires A, Carvalho R, Amaral JS, et al. Screening of chemical composition, antimicrobial and antioxidant activities in pomegranate, quince, and persimmon leaf, peel, and seed: valorization of autumn fruits by-products for a one health perspective. Antibiotics. 2023;12(7):1086. http://doi.org/10.3390/antibiotics12071086

Chavasco JM, Feliphe BHMP, Cerdeira CD, Leandro FD, Coelho LFL, Silva JJ, et al. Evaluation of antimicrobial and cytotoxic activities of plant extracts from Southern Minas Gerais Cerrado. Revista do Instituto de Medicina Tropical de São Paulo. 2014;56(1):13-20. http://doi.org/10.1590/S0036-46652014000100002

Santos LFD, Lopes ST, Nazari MT, Biduski B, Pinto VZ, Santos JSD, et al. Fruit pomace as a promising source to obtain biocompounds with antibacterial activity. Critical Reviews in Food Science and Nutrition. 2023;63(33):12597-609. http://doi.org/10.1080/10408398.2022.2103510

Peixoto CM, Dias MI, Alves MJ, Calhelha RC, Barros L, Pinho SP, et al. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry. 2018;253:132-8. http://doi.org/10.1016/j.foodchem.2018.01.163

Lima AS, Maia DV, Haubert L, Oliveira TL, Fiorentini AM, Rombaldi CV, et al. Action mechanism of araçá (Psidium cattleianum Sabine) hydroalcoholic extract against Staphylococcus aureus. LWT. 2020;119:108884. http://doi.org/10.1016/j.lwt.2019.108884

Stieven AC, Moreira JJS, Silva CF. Essential oils of uvaia (Eugenia pyriformis Cambess): evaluation of the microbiologycal and antioxidant activities. Eclética Química. 2009;34(3):7-13. http://doi.org/10.1590/S0100-46702009000300001

Souza AM, Oliveira VB, Oliveira CF, Betim FCM, Pacheco SDG, Cogo LL, et al. Chemical composition and in vitro antimicrobial activity of the essential oil obtained from Eugenia pyriformis Cambess. (Myrtaceae). Brazilian Archives of Biology and Technology. 2021;64:1-10. http://doi.org/10.1590/1678-4324-2021200663

Dacoreggio MV, Santetti GS, Inácio HP, Baranzelli J, Emanuelli T, Hoff RB, et al. Phenolic compounds profile of optimised green and eco-friendly extracts of Eugenia pyriformis leaves: an alternative for antioxidant and antibacterial applications. Natural Product Research. 2023;39(5):1422–7. http://doi.org/10.1080/14786419.2023.2297403

Sganzerla WG, Beling PC, Ferrareze JP, Komatsu RA, Nunes MR, Veeck APL. Nutritional, physicochemical and antimicrobial properties of uvaia pulp (Eugenia pyriformis Cambess). Communications in Plant Sciences. 2018;8:1-7. http://doi.org/10.26814/cps2018001

Capeletto C, Conterato G, Scapinello J, Rodrigues FS, Copini MS, Kuhn F, et al. Chemical composition, antioxidant and antimicrobial activity of guavirova (Campomanesia xanthocarpa Berg) seed extracts obtained by supercritical CO2 and compressed n-butane. The Journal of Supercritical Fluids. 2016;110:32-8. http://doi.org/10.1016/j.supflu.2015.12.009

Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food and Chemical Toxicology. 2008;46(2):446-75. http://doi.org/10.1016/j.fct.2007.09.106

Perricone M, Arace E, Corbo MR, Sinigaglia M, Bevilacqua A. Bioactivity of essential oils: a review on their interaction with food components. Frontiers in Microbiology. 2015;6:76. http://doi.org/10.3389/fmicb.2015.00076

Kim HS, Park HD. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One 2013;8(9):e76106. http://doi.org/10.1371/journal.pone.0076106

Kim HS, Lee SH, Byun Y, Park HD. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Scientific Reports. 2015;5:8656. http://doi.org/10.1038/srep08656

De Grandis RA, Mochetti HF, Santinon ME, Perina S, Resende FA, et al. Avaliação da atividade antibacteriana do gengibre (Zingiber officinale Roscoe) e do maracujá amarelo (Passiflora edulis Sims). Revista de Ciências Farmacêuticas Básica e Aplicada. 2015;36(1):77-82. https://rcfba.fcfar.unesp.br/index.php/ojs/article/view/69

Utchariyakiat I, Surassmo S, Jaturanpinyo M, Khuntayaporn P, Chomnawang MT. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complementary Medicine and Therapies. 2016;16:158. http://doi.org/10.1186/s12906-016-1134-9

Abdelatti MAI, Abd El-Aziz NK, El-Naenaeey EYM, Ammar AM, Alharbi NK, Alharthi A, et al. Antibacterial and anti-efflux activities of cinnamon essential oil against pan and extensive drug-resistant Pseudomonas aeruginosa isolated from human and animal sources. Antibiotics. 2023;12(10):1514. http://doi.org/10.3390/antibiotics12101514

Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial Pathogenesis. 2018;198-203. http://doi.org/https://doi.org/10.1016/j.micpath.2018.04.036

Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi SM. Antibacterial effects of cinnamon: from farm to food, cosmetic and pharmaceutical industries. Nutrients. 2016;7(9):7729-48. http://doi.org/10.3390/nu7095359

Published

2025-08-26

How to Cite

PANIZZON, Andryara et al. In vitro antimicrobial activity of brazilian native fruit pomace extracts and essential oils against multidrug-resistant Pseudomonas aeruginosa of animal origin. Brazilian Animal Science/ Ciência Animal Brasileira, Goiânia, v. 26, 2025. DOI: 10.1590/1809-6891v26e-82765E. Disponível em: https://revistas.ufg.br/vet/article/view/82765. Acesso em: 5 dec. 2025.

Issue

Section

VETERINARY MEDICINE

Data statement

  • The research data is contained in the manuscript