Azospirillum brasilense associated with nitrogen fertilization in Urochloa humidicola pastures cultivated in the Amazonian savanna
DOI:
https://doi.org/10.1590/1809-6891v26e-81007EAbstract
The objective of this study was to assess the impact of Azospirillum brasilense in conjunction with nitrogen fertilization on structural, morphogenetic, yield-related, and chemical characteristics of Urochloa humidicola cultivated in the Amazon savannah. Treatments consisted of five nitrogen application rates (0, 50, 100, 150, and 200 kg ha-1), both with and without A. brasilense inoculation. The experiment was laid out in a completely randomized design with a 5×2 factorial arrangement, including four replications. The morphological composition of the pastures, morphogenetic and structural characteristics and chemical composition of the forage were evaluated. The utilization of A. brasilense, either alone or combined with nitrogen fertilization, did not influence the enhancement of forage yield. However, nitrogen fertilisation led to consistent increases in production, primarily through an increase in leaf and culm components and a reduction in the proportion of dead material in pastures. It also led to a linear increase in the proportions of NDF, ADF and CP in the forage. The use of A. brasilense does not alter the production and chemical composition of the forage, while nitrogen fertilization favors the management of pastures with U. humidicola grown in Amazonian savanna soil.
Downloads
References
Lange A, Dantas J, Freddi OS, Buratto W, Spaziani C, Caione G. Soil degradation by the extensive livestock in the southern amazon of the state of Mato Grosso. Nativa. 2019; 7(6):642-648. https://doi.org/10.31413/nativa.v7i6.6838
Martins CDM, Euclides VPB, Barbosa RA, Montagner DB, Miqueloto T. Forage intake and animal performance in Urochloa humidicola cultivars under continuous stocking. Pesquisa Agropecuária Brasileira. 2013; 48(10):1402-1409. https://doi.org/10.1590/S0100-204X2013001000012
Monteiro Neto JLL, Araújo WF, Chagas EA, Siqueira RHS, Chagas PC, Silva ES. Slow-release fertilizer and hydrogel on the initial growth of camu-camu under different water conditions in Savannah soil. Revista Brasileira de Ciências Agrárias.2020; 15(3):e8139. https://doi.org/10.5039/agraria.v15i3a8139
Dias ES, Monteiro Neto JLL, Dresch BL, Rodrigues RO, Araújo WF, Chagas EA, Maia SS, Siqueira RHS, Chagas PC. Sakazaki RT, Soares-da-Silva E, Albuquerque JAA, Abanto-Rodríguez C. Organic fertilization for the beginning of sweet potato (Ipomoea batatas L.) cultivation in savanna soils. Revista Chapingo Serie Horticultura. 2021; 27(1):27-42. https://doi.org/10.5154/r.rchsh.2020.05.011
Hermógenes GM, Oliveira EM, Alves JMA, Barreto GF, Guedes YA, Albuquerque JAA. Phytotechnical performance and resistance to leaf-footed bugs of green maize intercropped with Poacea in the Amazon savannah. Acta Amazonica. 2022; 52(4):270-276. https://doi.org/10.1590/1809-4392202102960
Silva DRG, Costa KAP, Faquin V, Oliveira, IP, Bernardes TF. Rates and sources of nitrogen in the recovery of the structural and productive characteristics of marandu grass. Revista Ciência Agronômica. 2013; 44(1):184-191. https://doi.org/10.1590/S1806-66902013000100023
Rosado TL, Gontijo I. Nitrogenous fertilization in pastures: promising results obtained in the research and reality faced by producers. Vértices. 2017; 19(1):163-174. https://doi.org/10.19180/1809-2667.v19n12017p163-174
Rocha EC, Terra ABC, Oliveira TE, Araújo BA, Silva NCD, Rezende AV, Florentino LA. Use of associative diazotrophic bacteria in pasture areas: alternative for mitigating greenhouse gases. Research, Society and Development. 2022; 11(5):e20911527939. https://doi.org/10.33448/rsd-v11i5.27939
Taiz L, Zeiger E, Moller IM, Murphy A. Fisiologia e desenvolvimento vegetal. 6.ed. Artmed, Porto Alegre, RS; 2017. 848p.
Leite RC, Santos JGD, Silva EL, Alves CRCR, Hungria M, Leite RC, Santos AC. Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop & Pasture Science. 2019; 70:61-67. https://doi.org/10.1071/CP18105
Rocha EC, Terra ABC, Oliveira TE, Araújo BA, Silva NCD, Rezende AV, Florentino LA. Use of associative diazotrophic bacteria in pasture areas: alternative for mitigating greenhouse gases. Research, Society and Development. 2022; 11(5): e20911527939. https://doi.org/10.33448/rsd-v11i5.27939
Hungria M, Franco AA. The importance of biological nitrogen fixation in the tropics: limitations and potentialities. In: Fragoso C, editor. Biological nitrogen fixation with non-legumes. Dordrecht: Kluwer Academic Publishers; 1993. p. 43–74.
Hungria M, Vargas MA. Environmental factors affecting N₂ fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research. 2000; 65(2–3):151-64. https://doi.org/10.1016/S0378-4290(99)00084-2
Alves MV, Nesi CN, Naibo G, Barreta MH, Lazzari M, Fiorese Júnior A, Skoronski E. Corn seed inoculation with Azospirillum brasilense in different nitrogen fertilization management. Revista Brasileira de Ciências Agrárias. 2020; 15(3):e8100. https://doi.org/10.5039/agraria.v15i3a8100
Abd-Alla MH, Salem MA, Abdel-Wahab EE. Enhancing Rhizobium–Legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating Climate Change. Agriculture. 2023; 13(11): 2092. https://doi.org/10.3390/agriculture13112092
Benedetti UG, Vale Júnior JF, Schaefer CEGR, Melo VF, Uchôa SCP. Genesis, chemistry and mineralogy of soils derived from Plio-Pleistocene sediments and from volcanic rocks in Roraima North Amazonia. Revista Brasileira de Ciência do Solo. 2011; 35(2):299-312. https://doi.org/10.1590/S0100-06832011000200002
Couto-Santos FR, Luizão FJ, Carneiro Filho A. The influence of the conservation status and changes in the rainfall regime on forest-savanna mosaic dynamics in Northern Brazilian Amazonia. Acta Amazonica. 2014; 44:197-206. https://doi.org/10.1590/S0044-59672014000200005
Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JÁ, Araújo Filho JC, Oliveira JB, Cunha TJF. Sistema Brasileiro de Classificação de Solos. 5.ed. Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF; 2018. 356p.
Soil Survey Staff. Soil survey manual. Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service; 2022. (Agricultural Handbook, 18).
Werner JC, Paulino VT, Cantarella H, Andrade NO, Quaggio JA. Forrageiras. In: van Raij B, Cantarella H, Quaggio JA, Furlani AMC, (Eds). Recomendações de adubação e calagem para o Estado de São Paulo: Boletim Técnico 100. Campinas: Instituto Agronômico de Campinas (IAC); 1997. p. 261–73.
Silva DJ, Queiroz AC. Análise de alimentos: Métodos Químicos e Biológicos. 3.ed. Universidade Federal de Viçosa, Viçosa, MG; 2006. 236p.
Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology. 2019; (13): 1314-1335. https://doi.org/10.1111/1751-7915.13517
Oono R, Muller KE, Ho R, Jimenez Salinas A, Denison RF. How do less-expensive nitrogen alternatives affect legume sanctions on rhizobia? Ecology and Evolution. 2020; 10: 10645-10656. https://doi.org/10.1002/ece3.6718
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Applied Environmental Microbiology. 2022; 88: e0052622. https://doi.org/10.1128/aem.00526-22
Wendlandt CE, Gano-Cohen KA, Stokes PJN, Jonnala BNR, Zomorrodian AJ, Al-Moussawi K, Sachs JL. Wild legumes maintain beneficial soil rhizobia populations despite decades of nitrogen deposition. Oecologia. 2022; 198: 419–430. https://doi.org/10.1007/s00442-022-05116-9
Godschalx AL, Diethelm AC, Kautz S, Ballhorn DJ. Nitrogen-Fixing Rhizobia Affect Multitrophic Interactions in the Field. Journal of Insect Behavior. 2023; 36: 168-179. http://dx.doi.org/10.1007/s10905-023-09833-8
Brito-Santana P, Duque-Pedraza JJ, Bernabéu-Roda LM, Carvia-Hermoso C, Cuéllar V, Fuentes-Romero F, Acosta-Jurado S, Vinardell JM, Soto MJ. Sinorhizobium meliloti DnaJ Is Required for Surface Motility, Stress Tolerance, and for Efficient Nodulation and Symbiotic Nitrogen Fixation. International Journal ofMolecular Sciences. 2023; 24(6): 5848. https://doi.org/10.3390/ijms24065848
Okon Y, Labandera-Gonzalez C. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry. 1994; 26(12):1591-601. https://doi.org/10.1016/0038-0717(94)90311-5
Bashan Y, Bashan LE. How the plant growth-promoting bacterium Azospirillum promotes plant growth a critical assessment. Advances in Agronomy.2010; 108:77-136. https://doi.org/10.1016/S0065-2113(10)08002-8
Hungria M, Campo RJ, Souza EM, Pedrosa FO. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil. 2005; 279(1):85–99. http://dx.doi.org/10.1007/s11104-009-0262-0
Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms. 2022; 10(8):1528. http://dx.doi.org/10.3390/microorganisms10081528
Compant S, Van Der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiology Ecology. 2010; 73(2):197–214. https://doi.org/10.1111/j.1574-6941.2010.00900.x
Santos EMR, Carvalho BHR, Rodrigues PHM, Basso KC, Carvalho AN. Structural characteristics of palidase grass deferred Heights and nitrogen variables. Archivos de Zootecnia. 2018; 67(259):420-426. https://doi.org/10.21071/az.v67i259.3800
Silva AB, Carvalho CAB, Pires CA, Almeida JCC, Nepomuceno DD. Effects of nitrogen dosage and urea source on morphological composition and forage accumulation in massai grass. Semina: Ciências Agrárias. 2018; 39(4):1407-1416. https://doi.org/10.5433/1679-0359.2018v39n4p1407
Silva CCF, Bonomo P, Pires AJV, Maranhão CM, Patês NMS, Santos LC. Morphogenetic and structural characteristics of two grasses submitted to different nitrogen doses. Revista Brasileira de Zootecnia. 2009; 38(4):657-661. https://doi.org/10.1590/S1516-35982009000400010
Duru M, Ducrocq H. Growth and senescence of the successive leaves on a cocksfoot tiller. Effect of nitrogen and cutting regime. Annals of Botany. 2000; 85:645-653. https://doi.org/10.1006/anbo.1999.1117
Lopes AR, Lage Filho NM, Rego AC, Domingues FN, Silva TC, Faturi C, Silva NC, Silva WL. Effect of nitrogen fertilization and shading on morphogenesis, structure and leaf anatomy of Megathyrsus maximus genotypes. Front. Plant Sci. 2024; 15:1411952. https://doi.org/10.3389/fpls.2024.1411952
Roma CFC, Cecato U, Soares Filho CV, Santos GT, Ribeiro OL, Iwamoto BS. Morphogenetic and tillering dynamics in Tanzania grass fertilized and non-fertilized with nitrogen according to season. Revista Brasileira de Zootecnia. 2012; 41(3):565-573. https://doi.org/10.1590/S1516-35982012000300013
Cruz NT, Pires AJV, Fries DD, Jardim RR, Sousa BML, Dias DLS, Bonomo P, Ramos BLP, Sacramento MRSV. Factors affecting the morphogenic and structural characteristics of forage plants. Research, Society and Development. 2021; 10(7):e5410716180. https://doi.org/10.33448/rsd-v10i7.16180
Souza JP, Townsend CR, Araújo SRC, Oliveira GA. Morphogenic, structural and agronomic characteristics of tropical grasses: a review. Research, Society and Development. 2020; 9(8):e942986588. https://doi.org/10.33448/rsd-v9i8.6588
Abreu MJI, Paula PRP, Tavares VB, Cidrini IA, Nunes HO, Emiliano WJC, Souza WL, Coelho RM, Neiva Júnior AP, Tomaz CEP. Morphogenesis, structural characteristics and forage accumulation of Megathyrsus maximus BRS Zuri subjected to nitrogen fertilization. Boletim De Indústria Animal. 2020; 77(1):1-17. https://doi.org/10.17523/bia.2020.v77.e1486
Delevatti LM, Cardoso AS, Barbero RP, Leite RG, Romanzini EP, Ruggierri AC, Reis RA. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Scientific Reports. 2019; 9:n.7596. https://doi.org/10.1038/s41598-019-44138-x
Pereira LET, Herling VR, Tech ARB. Current Scenario and Perspectives for Nitrogen Fertilization Strategies on Tropical Perennial Grass Pastures: A Review. Agronomy. 2022; 12(2079):1-19. https://doi.org/10.3390/agronomy12092079
Alves AR, Pascoal LAF, Cambuí GB, Trajano JS, Silva MC, Gois GC. Fiber ruminants: nutritional, methodological and functional aspect. Pubvet. 2016; 10(7):568-579. https://doi.org/10.22256/pubvet.v10n7.568-579
Oliveira MW, Goretti AL, Lana RP, Rodrigues TC. Dry matter and protein accumulation as a function of nitrogen Fertilization in Brachiaria brizantha cv. Marandu (Urochloa brizantha). Revista Brasileira de Agropecuária Sustentável . 2022; 12(1):10-18. https://doi.org/10.21206/rbas.v12i1.13125
Fonseca NVB, Cardoso AS, Berça AS, Dornellas IA, Ongaratto F, Silva MLC, Ruggieri AC, Reis RA. Effect of different nitrogen fertilizers on nitrogen efficiency use in Nellore bulls grazing on Marandu palisade grass. Livestock Science. 2022; 263:105012. https://doi.org/10.1016/j.livsci.2022.105012
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Brazilian Animal Science/ Ciência Animal Brasileira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Data statement
-
The research data is contained in the manuscript























