Metabolizable energy levels in diets for slow-growing chickens

Authors

DOI:

https://doi.org/10.1590/1809-6891v26e-79278E

Abstract

In this study, we aimed to assess the impact of four levels of metabolizable energy (ME) in feed for slow-growing male and female chickens on their growth performance, carcass yield, and nutrient metabolizability. For growth performance and carcass yield analyses, 480 male and female Isa Label chicks were distributed in a completely randomized design in a 4 × 2 factorial scheme. The birds were fed experimental diets containing 4 different ME levels (2,725, 2,850, 2,975, and 3,100 kcal/kg) during two different feeding periods ranging from 1–28 and 1–56 days of age, with each treatment group consisting of 6 replicates of 10 birds each. The effects of these feeding treatments on growth performance were assessed at 28 and 56 days of age, whereas those on carcass yield were evaluated at 56 days of age. The metabolic analysis was carried out by total excreta collection from 17 to 21 days, using the same treatments as in the growth performance and carcass yield analyses and eight replicates of 10 birds, totaling 320 birds. The data were subjected to the analysis of variance and polynomial regression for ME levels. At 28 days, the chickens showed significant differences in their live weight, weight gain, and feed consumption. Moreover, a positive quadratic regression was found for live weight and weight gain, and a negative linear regression was obtained for feed conversion. At 56 days, a quadratic regression was found for feed consumption and conversion, with no effect on carcass or prime cut yields. Nitrogen balance and nitrogen metabolizability coefficient showed a quadratic regression effect. A positive linear regression was found for ether extract balance, and a quadratic regression was obtained for the metabolizability coefficient. The variables apparent ME and the ME corrected for nitrogen showed a positive linear regression effect. It can be concluded that feed containing 2,900-2,930 kcal ME/kg is recommended for broiler chickens during 1–28 days of their age, regardless of sex.

Downloads

Download data is not yet available.

References

Santos FR, Stringhini JH, Oliveira PR, Duarte EF, Minafra CS, Café MB. Values of Metabolizable Energy and Metabolization of Nutrients for Slow- and Fast-growing Birds at Different Ages. Brazilian Journal of Poultry Science. 2015; 17(4): 517-522. Available from: https://doi.org/10.1590/1516-635X1704517-522

Copat LLP, Nascimento KMRS, Kiefer C, Berno PR, Freitas HB, Silva TR, Chaves NRB, Amin M, Santana PG, Oliveira NG. Metabolizable Energy Levels for Free-Range Broiler Chickens. Journal of Agricultural Studies. 2020; 8(3): 820-831. Available from DOI: https://doi.org/10.5296/jas.v8i3.16666

Silva TR, Nascimento KMRS, Kiefer C, Copat LLP, Freitas HB, Chaves NRB, Silva LAR, Leite JV, Ofiço AV. Metabolizable energy levels in diets with a fixed nutrient: calorie ratio for free-range broilers. Semina: Ciências. Agrárias. 2021; 42(6): 4009-4022. Available from: https://doi.org/10.5433/1679-0359.2021v42n6Supl2p4009

Santos FR, Stringhini JH, Minafra CS, Almeida RR, Oliveira PR, Duarte FR, Silva RB, Café MB. Formulação de ração para frangos de corte de crescimento lento utilizando valores de energia metabolizável dos ingredientes determinada com linhagens de crescimento lento e rápido. Arquivo Brasileiro de medicina veterinária e zootecnia. 2014; 66(6): 839-1846. Available from: https://doi.org/10.1590/1678-6402

Mendonça MO, Sakomura NK, Santos JBKE, Freitas FR, Fernandes ERF, Barbosa NAA. Níveis de energia metabolizável para machos de corte de crescimento lento criados em semiconfinamento. Revista Brasileira de Zootecnia. 2008. 37(8):1433-1440. Available from: https://doi.org/10.1590/S1516-35982008000800014

Gaya LG, Mourão GB, Ferraz JBS. Aspectos genético-quantitativos de características de desempenho, carcaça e composição corporal em frangos. Ciência Rural. 2006; 36(2): 709-716. Available from: https://doi.org/10.1590/S0103-84782006000200058

Rostagno HS, Albino LFT, Hannas MI, Donzele JL, Sakomura NK, Perazzo FG Saraiva A, Teixeira ML, Rodrigues PB, Oliveira RF, Barreto, SLT, Brito CO, Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. 4st ed. Viçosa: Imprensa Universitária; 2017. 488p.

Silva DJ, Queiroz AC. Análises de alimentos: métodos químicos e biológicos. 3st ed. Viçosa: UFV; 2002. 235p.

Sakomura NK, Rostagno HS. Métodos de pesquisa em nutrição de monogástricos. 2st ed. Jaboticabal: Funep; 2016. 262p.

Mendonça MO, Sakomura NK, Santos FR, Barbosa, NAA, Fernandes JBKE, Freitas ERF. Níveis de energia metabolizável e relações energia:proteína para aves de corte de crescimento lento criadas em sistema semiconfinado. Acta Scientiarum Animal Sciences. 2007; 29(1): 23-30. Available from: https://www.researchgate.net/publication/40422963_Niveis_de_energia_metabolizavel_e_relacoes_energiaproteina_para_aves_de_corte_de_crescimento_lento_criadas_em_sistema_semiconfinado_

Sakomura N, Longo FA, Rabello CB, Watanabe K, Pelícia K, Freitas ER. Efeito do Nível de Energia Metabolizável da Dieta no Desempenho e Metabolismo Energético de Frangos de Corte. Revista Brasileira de Zootecnia. 2004; 33(6): 1758-1767. Available from: https://doi.org/10.1590/S1516-35982004000700014

Boekholt HA, Grinten PVD , Schreurs VV , Los MJ , Leffering, CP . Effect of dietary energy restriction on retention of protein, fat and energy in broiler chickens. British Poultry Science. 1994; 35(4): 603-614. Available from: https://doi.org/10.1080/00071669408417725

Oliveira Neto AR, Oliveira RFM, Donzele JL et al. Níveis de energia metabolizável para frangos de corte no período de 22 a 42 dias de idade mantidos em ambiente de termoneutro. Revista Brasileira de Zootecnia. 2000; 29(4): 1132-1140. Available from: https://doi.org/10.1590/S1516-35982000000400026

Mendes AA, Moreira J, Oliveira EG, Garcia EA, Almeida MIM, Garcia RG. Efeitos da energia da dieta sobre desempenho, rendimento de carcaça e gordura abdominal de frangos de corte. Revista Brasileira de Zootecnia. 2004; 33(6): 2300-2307. Available from: https://doi.org/10.1590/S1516-35982004000900016

Duarte KF, Junqueira OM, Filardi RS, Laurentiz AC, Sousa HBAS, Oliveira TMFS. Efeito dos níveis de energia e programas de alimentação sobre a qualidade de carcaça e desempenho de frangos de corte abatidos tardiamente. Acta Scientiarum Animal Sciences. 2007; 29(1): 39-47. Available from: DOI: https://doi.org/10.4025/actascianimsci.v29i1.250

Oliveira Neto AR, Oliveira RFM, Donzele JL et al. Níveis de energia metabolizável para frangos de corte no período de 22 a 42 dias de idade mantidos em condições de estresse de calor. Revista Brasileira de Zootecnia. 1999; 28(5): 1054-1062. Available from: https://doi.org/10.1590/S1516-35981999000500022

Nascimento AH, Silva JHV, Albino LFT, Runho RC, Pozza PC. Energia metabolizável e relação energia:proteína bruta nas fases pré-inicial e inicial de frangos de corte. Revista Brasileira de Zootecnia. 2004; 33(4): 911-918. Available from: https://doi.org/10.1590/S1516-35982004000400011

Dourado LRB, Sakomura NK, Nascimento DCN, Dorigam JC, Marcato SM, Fernandes JBK. Crescimento e desempenho de linhagens de aves pescoço pelado criadas em sistema semi-confinado, Ciência agrotécnica. 2009; 33(3): 875-881. Available from: https://doi.org/10.1590/S1413-70542009000300030

Takahashi SE, Mendes AA, Saldanha ESPB, Pizzolante CC, Pelícia K, Garcia RG, Paz ICLA, Quinteiro ICLA. Efeito do sistema de criação sobre o desempenho e rendimento de carcaça de frangos de corte tipo colonial. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2006; 58(4): 624-632. Available from: https://doi.org/10.1590/S0102-09352006000400026

Cançado SV, Baião NC. Efeito do período de jejum entre o nascimento e o alojamento e da adição de óleo à ração sobre o desempenho de pintos de corte e digestibilidade da ração. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2002; 54(6): 630- 635. Available from: https://doi.org/10.1590/S0102-09352002000600012

Singh M, LIM AJ, Muir WI, Groves PJ. Comparison of performance and carcass composition of a novel slow-growing crossbred broiler with fast-growing broiler for chicken meat in Australia. Poultry Science. 2021; 100(3): 1-11. Available from: https://doi.org/10.1016/j.psj.2020.12.063

Massi PA, Lima CAR, Machado NJB, Dilelis F, Brasil RJM, Corrêa GSS, Curvelo FA. Metabolizable energy for broilers with different genetic growth potentials under a free-range system. Boletim Indústria Animal. 2018; 75(s/n): 1-12. Available from: DOI: https://doi.org/10.17523/bia.2018.v75.e1420

Published

2025-05-20

How to Cite

VERÍSSIMO, Saulo; CAFÉ, Marcos Barcellos; CARVALHO, Fabyola Barros de; CAMARGO, Sarah Maria Pires; BRASILEIRO, Júlio César Lopes; MACHADO, Juliana Pinto; LEITE, Paulo Ricardo de Sá da Costa; LEANDRO, Nadja Susana Mogyca. Metabolizable energy levels in diets for slow-growing chickens. Brazilian Animal Science/ Ciência Animal Brasileira, Goiânia, v. 26, 2025. DOI: 10.1590/1809-6891v26e-79278E. Disponível em: https://revistas.ufg.br/vet/article/view/79278. Acesso em: 5 dec. 2025.

Issue

Section

ANIMAL SCIENCE