Hemato-biochemical profile of tambaqui (Colossoma macropomum Cuvier, 1816) comparing different growth phases in aquaponic systems

Authors

DOI:

https://doi.org/10.1590/1809-6891v25e-78130E

Abstract

The aim of this study was to evaluate the haemato-biochemical parameters of

tambaqui Colossoma macropomum in different growth phases in an integrated culture with açai Euterpe oleracea. For this, 240 juvenile tambaqui with initial average weight and length of 21.8 ± 7.74 g and 11.28 ± 6.88 cm were cultured in an aquaponic system integrated with açai for 180 days. During the period, 108 healthy tambaquis were sampled and categorized into five distinct growth phases. At each growth phase blood aliquots were collected. The first phase being fish with an average weight of 103.1 ± 5.27 g; second phase with 823.4 ± 42.6 g; third phase with 1087.75 ± 16.38 g; fourth phase with 1402.0 ± 76.6 g and fifth phase with 1815.0±65.1 g. Water quality variables remained within acceptable parameters for both cultures. Erythrocyte was significantly lower in the first and second phase. Haemoglobin was significantly lower in fish in the first phase. Haematocrit remained the same from the second phase onwards. MCV was significantly lower in fish with 1815.0 ± 65.1 g. Plasma glucose levels were significantly lower in the first and second phases. Cholesterol, triglycerides, and total proteins were significantly higher in fish of the fifth phase. AST was significantly lower in fish from the third phase when compared to fish from the first and fifth phases. ALT was significantly higher in fish from the first phase when compared to fish from the third, fourth, and fifth phases. The results are important tools for assessing the health and well-being of tambaqui in future research involving aquaponic cultures.

Downloads

Download data is not yet available.

Author Biography

Paola Fabiana Fazzi Gomes, Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil

     

References

Martinez-Cordova LR, Emerenciano MG, Miranda-Baeza A, Pinho SM, Garibay-Valdez E, Martínez-Porchas M. Advancing toward a more integrated aquaculture with polyculture> aquaponics> biofloc technology> FLOCponics. Aquac Int. 2023; 31(2):1057-1076. Available in: https://doi.org/10.1007/s10499-022-01016-0

Pinho SM, Mello GLD, Fitzsimmons KM, Emerenciano MGC. Integrated production of fish (pacu Piaractus mesopotamicus and red tilapia Oreochromis sp.) with two varieties of garnish (scallion and parsley) in aquaponics system. Aquac Int. 2018; 26:99-112. Available in: https://doi.org/10.1007/s10499-017-0198-y

Costa JAS, Sterzelecki FC, Natividade J, Souza RJF, Carvalho TCC, Melo NFAC, Luz RK, Palheta GDA. Residue from Açai Palm, Euterpe oleracea, as Substrate for Cilantro, Coriandrum sativum, Seedling Production in an Aquaponic System with Tambaqui, Colossoma macropomum. Agriculture. 2022; 12(10):1555. Available in: https://doi.org/10.3390/agriculture12101555

Sterzelecki FC, Jesus AMD, Jorge JLC, Tavares CM, Souza AJND, Santos MDLS, Takata R, Melo NFACD, Palheta GDA. Açai palm, Euterpe oleracea, seed for aquaponic media and seedling production. Aquac Eng. 2022; 98:102270. Available in: https://doi.org/10.1016/j.aquaeng.2022.102270

Nascimento ETDS, Pereira Junior RF, Reis VSD, Gomes BDJF, Owatari MS, Luz RK, Melo NFAC, Santos MDLS, Palheta GDA, Sterzelecki FC. Production of Late Seedlings of Açai (Euterpe oleracea) in an Aquaponic System with Tambaqui (Colossoma macropomum, Cuvier, 1818). Agriculture. 2023; 13(8):1581. Available in: https://doi.org/10.3390/agriculture13081581

Gomes LC, Simões LN, Araújo-Lima CARM. Tambaqui (Colossoma macropomum). In: Baldisserotto B, Gomes LC (Eds) Espécies nativas para piscicultura no Brasil, UFSM, Santa Maria, 2010. p. 175-204.

IBGE – Brazilian Institute of Geography and Statistics. SIDRA: survey of municipal livestock. 2023. Available at https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2019. Accessed on: August 25, 2023.

Morais IS, O'sullivan FLA. Biology, habitat and farming of tambaqui Colossoma macropomum (Cuvier, 1816). Sci Amazon. 2017; 6:81-93. Available in: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1060929

Val AL, Oliveira AM. Colossoma macropomum—A tropical fish model for biology and aquaculture. J Exp Zool A Ecol Integr Physiol. 2021; 335(9-10):761-770. Available in: https://doi.org/10.1002/jez.2536

Silva TBF, Silva RRDS, Pinto FEDN, Silva-Matos RRSD, Cordeiro KV, Pereira AM, Freitas JRB, Lopes JM. Criação de tambaqui associado à hidroponia em sistema de recirculação de água. Res Soc Dev. 2020; 9(9):e543997543-e543997543. Available in: https://doi.org/10.33448/rsd-v9i9.7543

Carneiro PCF, Morais CARS, Nunes MUC, Maria NA, Fujimoto RY. Produção Integrada de Peixes e Vegetais em Aquaponia. 2015. p. 30 Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1025991/producao-integrada-de-peixes-e-vegetais-em-aquaponia. Accessed on: August 25, 2023.

Másílko J, Zajíc T, Hlaváč D. The Culture System Affects Organoleptic Properties and Lipid Composition of Common Carp (Cyprinus Carpio L.) Meat. J Texture Stud. 2015; 46(5):345-352. Available in: https://doi.org/10.1111/jtxs.12134

Sigholt T, Erikson U, Rustad T, Johansen S, Nordtvedt TS, Seland A. Handling stress and storage temperature affect meat quality of farmed‐raised Atlantic salmon (Salmo salar). J Food Sci. 1997; 62(4):898-905. Available in: https://doi.org/10.1111/j.1365-2621.1997.tb15482.x

Birolo M, Bordignon F, Trocino A, Fasolato L, Pascual A, Godoy S, Nicoletto C, Maucieri C, Xiccato G. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture. 2020; 529:735653. Available in: https://doi.org/10.1016/j.aquaculture.2020.735653

Daskalova A. Farmed fish welfare: stress, post-mortem muscle metabolism, and stress-related meat quality changes. Int Aquat Res. 2019; 11(2):113-124. Available in: https://doi.org/10.1007/s40071-019-0230-0

Fazio F. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture. 2019; 500:237-242. Available in: https://doi.org/10.1016/j.aquaculture.2018.10.030

Romão S, Donatti L, Freitas MO, Teixeira J, Kusma J. Blood parameter analysis and morphological alterations as biomarkers on the health of Hoplias malabaricus and Geophagus brasiliensis. Braz Arch Biol Technol. 2006; 49:441-448. Available in: https://doi.org/10.1590/S1516-89132006000400012

Seriani R, França JG, Lombardi JV, Brito JM, Ranzani-Paiva MJT. Hematological changes and cytogenotoxicity in the tilapia Oreochromis niloticus caused by sub-chronic exposures to mercury and selenium. Fish Physiol Biochem. 2015; 41:311-322. Available in: https://doi.org/10.1007/s10695-014-9984-x

Bernardino MG, Silva EG, Bezerra TI, Lucena RB, Satake F. Ectoparasitologic, hematologic and histopathologic assessment of Hoplias malabaricus Bloch, 1794 from ponds located in Sumé municipality, state of Paraíba, Brazil. Pesqui Vet Bras. 2016; 36:581-586. Available in: https://doi.org/10.1590/S0100-736X2016000700003

Oliveira AMD, Val AL. Effects of climate scenarios on the growth and physiology of the Amazonian fish tambaqui (Colossoma macropomum) (Characiformes: Serrasalmidae). Hydrobiologia. 2017; 789:167-178. Available in: https://doi.org/10.1007/s10750-016-2926-0

Owatari MS, Jesus GFA, Brum A, Pereira SA, Lehmann NB, Pereira UDP, Martins ML, Mouriño JLP. Sylimarin as hepatic protector and immunomodulator in Nile tilapia during Streptococcus agalactiae infection. Fish Shellfish Immunol. 2018; 82:565-572. Available in: https://doi.org/10.1016/j.fsi.2018.08.061

Rodrigues RA, Nunes CS, Fantini LE, Kasai RYD, Oliveira CAL, Hisano H, Campos CMD. Dietary ascorbic acid influences the intestinal morphology and hematology of hybrid sorubim catfish (Pseudoplatystoma reticulatum× P. corruscans). Aquac Int. 2018; 26:1-11. Available in: https://doi.org/10.1007/s10499-017-0188-0

Nunes AL, Owatari MS, Rodrigues RA, Fantini LE, Kasai RYD, Martins ML, Mouriño JLP, Campos CMD. Effects of Bacillus subtilis C-3102-supplemented diet on growth, non-specific immunity, intestinal morphometry and resistance of hybrid juvenile Pseudoplatystoma sp. challenged with Aeromonas hydrophila. Aquac Int. 2020; 28:2345-2361. Available in: https://doi.org/10.1007/s10499-020-00586-1

Owatari MS, Silva LRD, Ferreira GB, Rodhermel JCB, Andrade JIAD, Dartora A, Jatobá A. Body yield, growth performance, and haematological evaluation of Nile tilapia fed a diet supplemented with Saccharomyces cerevisiae. Anim Feed Sci Technol. 2022; 293:115453. Available in: https://doi.org/10.1016/j.anifeedsci.2022.115453

Adeyemo BT, Obande RA, Solomon SG. Haematological reference ranges of cultured Clarias gariepinus in the Lower Benue River Basin, Nigeria. Comp Clin Path. 2014; 23:361-366. Available in: https://doi.org/10.1007/s00580-012-1624-1

Fazio F, Marafioti S, Arfuso F, Piccione G, Faggio C. Comparative study of the biochemical and haematological parameters of four wild Tyrrhenian fish species. Vet Med. 2013; 58(11):576-581.

Witeska M, Lugowska K, Kondera E. Reference values of hematological parameters for juvenile Cyprinus carpio. Bull Eur Assoc Fish Pathol. 2016; 36(4):169-180.

Ahmed I, Reshi QM, Fazio F. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquac Int. 2020; 28:869-899. Available in: https://doi.org/10.1007/s10499-019-00501-3

Tavares-Dias M, Ishikawa MM, Martins ML, Satake F, Hisano H, Pádua SB, Jerônimo GT, Sá ARS. Hematologia: ferramenta para o monitoramento do estado de saúde de peixes em cultivo. In: Saran Neto A, Mariano WSD, Sória SFP (Org.) Tópicos especiais em saúde e criação animal. São Carlos, SP: Pedro & João Editores, 2009. p. 43-80.

Bolleter WT, Bushman CJ, Tidwell PW. Spectrophotometric determination of ammonia as indophenol. Anal Chem. 1961; 33(4):592-594. Available in: https://doi.org/10.1021/ac60172a034

American Public Health Association (APHA). Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater, 16th ed., American Water Works Association (AWWA): Washington, DC, USA, 1995. p. 1268.

Saint-Paul U. Physiological adaptation to hypoxia of a neotropical characoid fish Colossoma macropomum, Serrasalmidae. Environ Biol Fishes. 1987; 11:53-62. Available in: https://doi.org/10.1007/BF00001845

Goldenfarb PB, Bowyer FP, Hall E, Brosious E. Reproducibility in the hematology laboratory: the microhematocrit determination. Am J Clin Pathol. 1971; 56(1):35-39. Available in: https://doi.org/10.1093/ajcp/56.1.35

Wintrobe MM. Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematol. 1934; 51(32):32-49.

Witeska M, Kondera E, Ługowska K, Bojarski B. Hematological methods in fish–Not only for beginners. Aquaculture. 2022; 547:737498. Available in: https://doi.org/10.1016/j.aquaculture.2021.737498

Yildiz HY, Robaina L, Pirhonen J, Mente E, Domínguez D, Parisi G. Fish welfare in aquaponic systems: its relation to water quality with an emphasis on feed and faeces—a review. Water. 2017; 9(1):13. Available in: https://doi.org/10.3390/w9010013

Pinho SM, David LH, Garcia F, Keesman KJ, Portella MC, Goddek S. South American fish species suitable for aquaponics: a review. Aquac Int. 2021; 29(4):1427-1449. Available in: https://doi.org/10.1007/s10499-021-00674-w

Sahiti H, Bislimi K, Dalo E, Murati K. Effect of water quality in hematological and biochemical parameters in blood of common carp (Cyprinus carpio) in two lakes of Kosovo. Nat Eng Sci. 2018; 3(3):323-332. Available in: https://doi.org/10.28978/nesciences.468987

Svetina A, Matašin Ž, Tofant A, Vučemilo M, Fijan N. Haematology and some blood chemical parameters of young carp till the age of three years. Acta Vet Hung. 2002; 50(4):459-467. Available in: https://doi.org/10.1556/avet.50.2002.4.8

Fazio F, Ferrantelli V, Saoca C, Giangrosso G, Piccione G. Stability of haematological parameters in stored blood samples of rainbow trout Oncorhynchus mykiss (Walbaum, 1792). Vet Med. 2017; 62(7):401-405. Available in: https://doi.org/10.17221/51/2017-VETMED

Ikechukwu OA, Obinnaya CL. Haematological profile of the African lungfish, Protopterus annectens (Owen) of Anambra River, Nigeria. J Am Sci. 2010; 6(2):123-130.

Arnaudov A, Velcheva I, Tomova E. Changes in the erythrocytes indexes of Carassius gibelio (Pisces, Cyprinidae) under the influence of zinc. Biotechnol Biotechnol Equip. 2009; 23(sup1):167-169. Available in: https://doi.org/10.1080/13102818.2009.10818391

Seibel H, Baßmann B, Rebl A. Blood will tell: what hematological analyses can reveal about fish welfare. Front Vet Sci. 2021; 8:616955. Available in: https://doi.org/10.3389/fvets.2021.616955

Witeska M. Erythrocytes in teleost fishes: a review. Zool Ecol. 2013; 23(4):275-281. Available in: https://doi.org/10.1080/21658005.2013.846963

Costa OTF, Dias LC, Malmann CSY, Ferreira CADL, Carmo IBD, Wischneski AG, Sousa RLD, Cavero BAS, Lameiras JLV, Dos-Santos MC. The effects of stocking density on the hematology, plasma protein profile and immunoglobulin production of juvenile tambaqui (Colossoma macropomum) farmed in Brazil. Aquaculture. 2019; 499:260-268. Available in: https://doi.org/10.1016/j.aquaculture.2018.09.040

Dias JA, Abe HA, Sousa NC, Couto MV, Cordeiro CA, Meneses JO, Cunha FS, Mouriño JLP, Martins ML, Barbas LAL, Carneiro PCF, Maria NA, Fujimoto RY. Dietary supplementation with autochthonous Bacillus cereus improves growth performance and survival in tambaqui Colossoma macropomum. Aquac Res. 2018; 49(9):3063-3070. Available in: https://doi.org/10.1111/are.13767

Affonso EG, Polez VLP, Corrêa CF, Mazon ADF, Araujo MRR, Moraes G, Rantin, FT. Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comp Biochem Physiol C Toxicol Pharmacol. 2002; 133(3):375-382. Available in: https://doi.org/10.1016/S1532-0456(02)00127-8

Barton BA. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002; 42(3):517-525. Available in: https://doi.org/10.1093/icb/42.3.517

López-Olmeda JF, Egea-Álvarez M, Sánchez-Vázquez FJ. Glucose tolerance in fish: is the daily feeding time important?. Physiol Behav. 2009; 96(4-5):631-636. Available in: https://doi.org/10.1016/j.physbeh.2008.12.015

Polakof S, Panserat S, Soengas JL, Moon TW. Glucose metabolism in fish: a review. J Comp Physiol B. 2012; 182:1015-1045. Available in: https://doi.org/10.1007/s00360-012-0658-7

Larsson Å, Fänge R. Cholesterol and free fatty acids (FFA) in the blood of marine fish. Comp Biochem Physiol B: Comp Biochem. 1977; 57(3):191-196. Available in: https://doi.org/10.1016/0305-0491(77)90142-0

Villacorta-Correa MA, Saint-Paul U. Structural indexes and sexual maturity of tambaqui Colossoma macropomum (Cuvier, 1818) (Characiformes: Characidae) in Central Amazon, Brazil. Ver Bras Biol. 1999; 59:637-652. Available in: https://doi.org/10.1590/S0034-71081999000400013

Vieira AL. Teores lipídicos do sangue do curimbatá Prochilodus scrofa (Steindachner, 1881). Bol Inst Pesca. 1986; 13:101-104. Available in: https://institutodepesca.org/index.php/bip/article/view/sumario_13_101-104

Babalola TOO, Adebayo MA, Apata DF, Omotosho JS. Effect of dietary alternative lipid sources on haematological parameters and serum constituents of Heterobranchus longifilis fingerlings. Trop Anim Health Prod. 2009; 41:371-377. Available in: https://doi.org/10.1007/s11250-008-9199-1

Abdel-Tawwab M. Effects of dietary protein levels and rearing density on growth performance and stress response of Nile tilapia, Oreochromis niloticus (L.). Int Aquat Res. 2012; 4(1): 3. Available in: https://doi.org/10.1186/2008-6970-4-3

Abdel-Tawwab M, Ahmad MH, Khattab YA, Shalaby AM. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture. 2010; 298(3-4):267-274. Available in: https://doi.org/10.1016/j.aquaculture.2009.10.027

Souza JSL, O'sullivan FLA. Gonadal development of tambaqui (Colossoma macropomum) Annals of the IX Scientific Initiation Journey of Embrapa Western Amazon, Manaus: Embrapa Western Amazon, 2012. p. 123-132. Available in: http://www.alice.cnptia.embrapa.br/alice/handle/doc/949685. Accessed on August 25, 2023.

Ovie KS, Bemigho IR, Gbemi OM. Variations in alanine aminotransferase and aspartate aminotransferase activities in African catfish: Clarias gariepinus (Burchell, 1822) at different sublethal concentrations of potassium permanganate. Sci Res Essays. 2010; 5(12):1501-1505.

Yin F, Sun P, Tang B, Dan X, Li A. Immunological, ionic and biochemical responses in blood serum of the marine fish Trachinotus ovatus to poly-infection by Cryptocaryon irritans. Exp Parasitol. 2015; 154:113-117. Available in: https://doi.org/10.1016/j.exppara.2015.04.010

Chen C, Chao C, Bowser PR. Comparative histopathology of Streptococcus iniae and Streptococcus agalactiae-infected tilapia. Bull Eur Assoc Fish Pathol. 2007; 27(1):2.

Zachary JF, McGavin MD, McGavin MD. Bases da patologia em veterinária. Elsevier Health Sciences Brazil. 2012. p. 507.

Published

2024-03-26

How to Cite

GOMES, Paola Fabiana Fazzi; SOUZA, Helen Cristiane Araújo; SENA, Marcela Cardoso; SOUZA, Joane Natividade; OWATARI, Marco Shizuo; STERZELECKI, Fabio Carneiro; MELO , Nuno Filipe Alves Correia de; PALHETA , Glauber David Almeida. Hemato-biochemical profile of tambaqui (Colossoma macropomum Cuvier, 1816) comparing different growth phases in aquaponic systems. Brazilian Animal Science/ Ciência Animal Brasileira, Goiânia, v. 25, 2024. DOI: 10.1590/1809-6891v25e-78130E. Disponível em: https://revistas.ufg.br/vet/article/view/78130. Acesso em: 14 dec. 2025.

Issue

Section

ANIMAL SCIENCE