Substitution of virginiamycin with yeast-based products (Saccharomyces cerevisiae) in diets of cattle: digestibility and ruminal parameters

Authors

DOI:

https://doi.org/10.1590/1809-6891v25e-77845E

Abstract

The aim of this study was to evaluate the effect of substituting virginiamycin with yeastbased products in high-energy diets containing monensin on the nutrient digestibility and ruminal
parameters of cattle. Five crossbred Nellore × Holstein steers (initial body weight 281 kg ± 9.2 kg)
were allotted to a 5 × 5 Latin square design. The diets were composed in dry matter basis of corn
silage (355 g kg-1), and concentrate composed of ground corn, soybean meal, soybean hulls,mineral
mix, limestone, salt and urea (645 g kg-1). The treatments were: 1 - control, 18 mg kg-1 dry matter (DM)
virginiamycin (VM); 2 - enriched yeast culture (Saccharomyces cerevisiae) at 7 g animal day-1 (EYC 7);
3 - enriched yeast culture (S. cerevisiae) at 14 g animal day-1 (EYC 14); 4 - autolyzed yeast (S. cerevisiae)
at 7 g animal day-1 (AY 7); and 5 - autolyzed yeast (S. cerevisiae) at 14 g animal day-1 (AY 14). Monensin
(18 mg kg-1 DM) was added to the mineral mix in all treatments. No significant differences (P > 0.05)
were found for DM intake (mean 8.36 kg DM), organic matter (OM) digestibility (average of 58.39%), or
mean ruminal pH (mean 6.75) among treatments. Moreover, the treatment did not have a significant
effect on the short-chain fatty acid or ammonia nitrogen concentrations. These results indicated the
possibility of replacing virginiamycin with yeast-based products at the lowest level (7 g of enriched
yeast culture or autolyzed yeast per animal day-1) in high-energy diets containing monensin.

Downloads

Download data is not yet available.

References

Millen DD, Pacheco RDL, Cabral LS, Cursino LL, Watanabe DHM, Rigueiro A. Rumenology. Millen DD, Pacheco RDL AM, editos. Springer International Publishing AG Switzerland; 2016. p. 127-156.

Duffield TF, Merrill JK, Bagg RN. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake1. Journal of Animal Science. 2012 Dec 1;90(12):4583–92. doi: 10.2527/jas.2011-5018.

Nagaraja TG, Avery TB, Bartley EE, Galitzer SJ, Dayton AD. Prevention of lactic acidosis in cattle by lasalocid or monensin. Journal of Animal Science. 1981 Jul 1;53(1):206–16. doi: 10.2527/jas1981.531206x.

Coe ML, Nagaraja TG, Sun YD, Wallace N, Towne EG, Kemp KE, Hutcheson JP. Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. Journal of Animal Science. 1999;77(8):2259–68. doi: 10.2527/1999.7782259x.

de Araújo DB, Barbosa LFSP, Borges CAA, et al. Rumenology. Millen, DD, Arrigoni, M. D. B. & Pacheco, R. D. L. editors. Springer International Publishing AG Switzerland; 2016. p. 189-209.

Nagaraja TG. Rumen health compendium. In: Sub-Acute Ruminal Acidosis in Beef Cattle. Teaneck, NJ, United States of America, 2020. p. 55-60. English.

Cocito C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiological Reviews. 1979 Jun;43(2):145–92. doi: 10.1128/mr.43.2.145-192.1979.

Rodrigues, PHM. Rumenology. Millen, DD, Arrigoni, M. D. B. & Pacheco, R. D. L. editors. Springer International Publishing AG Switzerland; 2016. p. 157-187.

Benatti JMB, Alves Neto JA, de Oliveira IM, de Resende FD, Siqueira GR. Effect of increasing monensin sodium levels in diets with virginiamycin on the finishing of Nellore cattle. Animal Science Journal. 2017 May 30;88(11):1709–14. doi: 10.1111/asj.12831.

Neumann M, Pontarolo GB, Cristo FB, Venancio BJ, Manchur AD, Ueno RK, et al. Associative effect of monensin sodium to virginiamycin on the performance of beef steers in the initial feedlot phase. Semina Ciências Agrárias. 2020 Aug 7;v 41:2349–64. doi: 10.5433/1679-0359.2020v41n5supl1p2349.

Erasmus LJ, Muya C, Erasmus S, Coertze RF, Catton DG. Effect of virginiamycin and monensin supplementation on performance of multiparous Holstein cows. Livestock Science. 2008 Dec;119(1-3):107–15. doi: 10.1016/j.livsci.2008.03.005.

Shurson GC. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology. 2018 Jan;235:60–76. doi: 10.1016/j.anifeedsci.2017.11.010.

Poppy GD, Rabiee AR, Lean IJ, Sanchez WK, Dorton KL, Morley PS. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. Journal of Dairy Science. 2012 Oct;95(10):6027–41. doi: 10.3168/jds.2012-5577.

Alves Z, Melo A, Figueiredo AR, Coimbra MA, Gomes AC, Rocha SM. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains. PLOS ONE. Weir TL, editor. 2015 Nov 24;10(11):e0143641. doi: 10.1371/journal.pone.0143641.

Callaway ES, Martin SA. Effects of a Saccharomyces cerevisiae Culture on ruminal bacteria that utilize lactate and digest cellulose. Journal of Dairy Science. 1997 Sep;80(9):2035–44. doi: 10.3168/jds.S0022-0302(97)76148-4.

Alugongo GM, Xiao J, Wu Z, Li S, Wang Y, Cao Z. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. Journal of Animal Science and Biotechnology. 2017 May 1;8(1):34. doi: 10.1186/s40104-017-0165-5.

Oeztuerk H, Schroêder B, Beyerbach M, Breves G. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. Journal of Dairy Science. 2005 Jul 1;88(7):2594–600. doi: 10.3168/jds.S0022-0302(05)72935-0

Spring P, Wenk C, Connolly A, Kiers A. A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition. 2015;3. doi: 10.1017/jan.2015.6.

Salinas-Chavira J, Arzola C, González-Vizcarra V, Manríquez-Núñez OM, Montaño-Gómez MF, Navarrete-Reyes JD, et al. Influence of feeding enzymatically hydrolyzed yeast cell wall on growth performance and digestive function of feedlot cattle during periods of elevated ambient temperature. Asian-Australasian Journal of Animal Sciences. 2015 May 14;28(9):1288–95. doi: 10.5713/ajas.15.0061.

Knollinger SE, Poczynek M, Miller B, Mueller I, de Almeida R, Murphy MR, Cardoso FC. Effects of autolyzed yeast supplementation in a high-starch diet on rumen realth, apparent digestibility, and production variables of lactating holstein cows. Animals. 2022 Sep 16;12(18):2445–5. doi: 10.3390/ani12182445.

Kröger I, Humer E, Neubauer V, Reisinger N, Aditya S, Zebeli Q. Modulation of chewing behavior and reticular pH in nonlactating cows challenged with concentrate-rich diets supplemented with phytogenic compounds and autolyzed yeast. Journal of Dairy Science. 2017 Dec;100(12):9702–14. doi: 10.3168/jds.2017-12755.

Zhu W, Wei ZH, Xu N, Yang F, Yoon I, Chung YH, et al. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology. 2017 Apr 28;8(1):36. doi: 10.1186/s40104-017-0167-3.

Vyas D, Uwizeye A, Mohammed R, Yang WZ, Walker ND, Beauchemin KA. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers1. Journal of Animal Science. 2014 Feb 1;92(2):724–32. doi: 10.2527/jas.2013-7072.

Dias ALG, Freitas JA, Micai B, Azevedo RA, Greco LF, Santos JEP. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. Journal of Dairy Science. 2018 Jan;101(1):201–21. doi: 10.3168/jds.2017-13241.

Shen Y, Wang H, Ran T, Yoon I, Saleem AM, Yang WZ. Influence of yeast culture and feed antibiotics on ruminal fermentation and site and extent of digestion in beef heifers fed high grain rations. Journal of Animal Science. 2018 Sep 7;96(9):3916–27. doi: 10.1093/jas/sky249.

Rumensin technical Guide [Internet]; 2011 [cited 21 Mar 2024]. Available from: https://issuu.com/grupopublique/docs/v2rm28_06_2010_manual_rumensin. Portuguese.

Gonçalves JRS, Pires AV, Susin I, de Lima LG, Mendes CQ, Ferreira EM. Substituição do grão de milho pelo grão de milheto em dietas contendo silagem de milho ou silagem de capim-elefante na alimentação de bovinos de corte. Revista Brasileira de Zootecnia. 2010 Sep;39(9):2032–9. doi: 10.1590/S1516-35982010000900023.

BCNRM - Beef Cattle Nutrient Requirements Model. Nutrient Requirements of Beef Cattle; 2016. 8th edition, 475p. Washington, DC: The National Academies Press.

Detmann E, Souza M, Filho SV, Berchielli T, Cabral L, Ladeira M; 2012. Métodos para Análise de Alimentos-Ciência Animal. Belo Horizonte, MG, Brazil, 214 p.

da Silva JF, Leão MI. Fundamentos de nutrição dos ruminantes. Livroceres. 1979.

Ferreira MA, Valadares Filho SC, Marcondes MI, Paixão ML, Paulino MF, Valadares RFD. Avaliação de indicadores em estudos com ruminantes: Digestibilidade. Revista Brasileira de Zootecnia. 1806-9290;2009(Aug 1);38:1568–73. doi: 10.1590/S1516-35982009000800022.

Ferreira EM, Pires AV, Susin I, Biehl MV, Gentil RS, de Parente M OM, et al. Nutrient digestibility and ruminal fatty acid metabolism in lambs supplemented with soybean oil partially replaced by fish oil blend. Animal Feed Science and Technology. 2016 Jun 1;216:30–9. doi: 10.1016/j.anifeedsci.2015.09.007.

Pontarolo GB, Neumann M, Cristo FB, Stadler Júnior ES, de Souza AM, Machado MP, et al. Effects of including autolyzed yeast in the finishing of feedlot steers. Semina: Ciências Agrárias. 2021 May 20;42(4):2471–88. doi: 10.5433/1679-0359.2021v42n4p2471.

Robinson PH, Erasmus LJ. Effects of analyzable diet components on responses of lactating dairy cows to Saccharomyces cerevisiae based yeast products: A systematic review of the literature. Animal Feed Science and Technology. 2009 Mar;149(3-4):185–98. doi: 10.1016/j.anifeedsci.2008.10.003.

Lascano GJ, Zanton GI, Suarez-Mena FX, Heinrichs AJ. Effect of limit feeding high- and low-concentrate diets with Saccharomyces cerevisiae on digestibility and on dairy heifer growth and first-lactation performance. Journal of Dairy Science. 2009 Oct 1;92(10):5100–10. doi: 10.3168/jds.2009-2177.

Neubauer V, Petri R, Humer E, Kröger I, Mann E, Reisinger N, et al. High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. Journal of Dairy Science. 2018 Mar;101(3):2335–49. doi: 10.3168/jds.2017-13565.

Marques RDS, Cooke RF. Effects of ionophores on ruminal function of beef cattle. Animals: An Open Access Journal from MDPI. 2021 Sep 30;11(10):2871. doi: 10.3390/ani11102871.

Yuan K, Liang T, Muckey MB, Mendonça LGD, Hulbert LE, Elrod CC, Bradford BJ. Yeast product supplementation modulated feeding behavior and metabolism in transition dairy cows. Journal of Dairy Science. 2015 Jan;98(1):532–40. doi: 10.3168/jds.2014-8468.

Wagner JJ, Engle TE, Belknap CR, Dorton KL. Meta-analysis examining the effects of Saccharomyces cerevisiae fermentation products on feedlot performance and carcass traits. The Professional Animal Scientist. 2016 Apr;32(2):172–82. doi: 10.15232/pas.2015-01438.

Navarrete JD, Montano MF, Raymundo C, Salinas-Chavira J, Torrentera N, Zinn RA. Effect of energy density and virginiamycin supplementation in diets on growth performance and digestive function of finishing steers. Asian-Australasian Journal of Animal Sciences. 2017 Mar 21;30(10):1396–404. doi: 10.5713/ajas.16.0826.

Erasmus LJ, Robinson PH, Ahmadi A, Hinders R, Garrett JE. Influence of prepartum and postpartum supplementation of a yeast culture and monensin, or both, on ruminal fermentation and performance of multiparous dairy cows. Animal Feed Science and Technology. 2005 Sep 1;122(3-4):219–39. doi: 10.1016/j.anifeedsci.2005.03.004.

Rigueiro ALN, Squizatti MM, Silvestre AM, Pinto ACJ, Estevam DD, Felizari LD, et al. The potential of shortening the adaptation of Nellore cattle to high-concentrate diets using only virginiamycin as sole feed additive. Frontiers in Veterinary Science. 2021 Aug 2;8:692705.

Russell JB, Wilson DB. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Journal of Dairy Science. 1996 Aug 1;79(8):1503–9. doi: 10.3168/jds.S0022-0302(96)76510-4.

McAllister TA. Rumen health compendium. In: Microbial Habitat and the Physico-Chemistry of the Rumen. Teaneck, NJ, United States of America, 2020. p. 23-31. English.

Metwally AE, Windisch W. Effect of inactivated yeast on rumen dry matter degradation and fermentation of low concentrate feed. African Journal of Agricultural Research. 2015 Dec 31;10(53):4888–95. doi: 10.5897/AJAR2015.10520.

Nagaraja TG; 1997. The Rumen Microbial Ecosystem. Hobson PN, Stewart CS, editors. Dordrecht: Springer Netherlands.

Cunha CS, Marcondes MI, Lopes A, Gionbelli S, Aurélio M, Knupp LS, et al. Do live or inactive yeasts improve cattle ruminal environment? Revista Brasileira de Zootecnia. 1806-9290;2019(Jan 1);48. doi: 10.1590/rbz4820180259.

Lehloenya KV, Krehbiel CR, Mertz KJ, Rehberger TG, Spicer LJ. Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. Journal of Dairy Science. 2008 Feb 1;91(2):653–62. doi: 10.3168/jds.2007-0474.

Acharya S, Pretz JP, Yoon I, Scott MF, Casper DP. Effects of Saccharomyces cerevisiae fermentation products on the lactational performance of mid-lactation dairy cows. Translational Animal Science. 2017;1(2):221–8. doi: 10.2527/tas2017.0028.

Savari M, Khorvash M, Amanlou H, Ghorbani GR, Ghasemi E, Mirzaei M. Effects of rumen-degradable protein:rumen-undegradable protein ratio and corn processing on production performance, nitrogen efficiency, and feeding behavior of Holstein dairy cows. Journal of Dairy Science. 2018 Feb 1;101(2):1111–22. doi: 10.3168/jds.2017-12776.

Putri EM, Zain M, Warly L, Hermon H. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Veterinary World. Mar 2021 Mar 17;14(3):640–8;14(3):640–8. doi: 10.14202/vetworld.2021.640-648.

Hoover WH. Chemical factors involved in ruminal fiber digestion. Journal of Dairy Science. 1986 Oct;69(10):2755–66. doi: 10.3168/jds.S0022-0302(86)80724-X.

Published

2024-07-24

How to Cite

OLIVEIRA, D. dos S. de; SILVA, L. de O. M.; RIBEIRO, L. G.; SOUSA, D. G. de; PEREIRA, L. M.; COUTO, V. R. M.; FERNANDES, M. H. M. da R.; ARNHOLD, E.; NASCIMENTO, M. Q. do; MANZANO, R. P.; FERNANDES, J. J. de R. Substitution of virginiamycin with yeast-based products (Saccharomyces cerevisiae) in diets of cattle: digestibility and ruminal parameters. Brazilian Animal Science/ Ciência Animal Brasileira, Goiânia, v. 25, 2024. DOI: 10.1590/1809-6891v25e-77845E. Disponível em: https://revistas.ufg.br/vet/article/view/77845. Acesso em: 4 dec. 2024.