Qualitative and quantitative characterization of waste layers fed diets containing mineral sources and rosemary oil levels

Authors

DOI:

https://doi.org/10.1590/1809-6891v25e-77674E

Abstract

This study aimed to evaluate the effects of mineral sources and rosemary oil levels in the
diet of commercial layers on the qualitative and quantitative characteristics of the waste generated.
Manure was obtained from 288 commercial laying hens of the HyLine Brown lineage (semi-heavy layers)
at 30 weeks of age over a period of 112 d (four cycles of 28 d). A completely randomized design was
used with a 2×3 factorial scheme with repeated measures over time (16 repetitions), with two mineral
sources (inorganic and organic) and three levels of rosemary oil (0, 100, and 200 mg kg-1). The waste
was collected weekly, weighed, and the calculations of waste production, residue coefficient (RC) were
performed. Also analyses of total solids (TS), volatile solids (VS), pH, macro-, and micro-minerals were
performed. Mineral sources affect the quality characteristics of the manure. The amount of rosemary
oil affected the quantitative and qualitative characteristics of the waste generated. It was concluded
that diets containing organic minerals resulted in waste with less polluting power, as it had a lower TS,
pH, total N, and total P values. Rosemary oil increased manure production in natural matter (NM) and
increased the TS and VS values in the manure layer, causing a greater environmental impact.

Downloads

Download data is not yet available.

References

Bhagwat, VG, Balamurugan E, Rangesh P.Cocktail of chelated minerals and phytogenic feed additives in the poultry industry: A review. Veterinary World. 2021; 14(2): 364. https://doi.org/10.14202/vetworld.2021.364-371

Zafar MH, Fatima M. Efficiency comparison of organic and inorganic minerals in poultry nutrition: a review. PSM Veterinary Research. 2018; 3(2): 53-59. https://psmjournals.org/index.php/vetres/article/view/264

Orzuna-Orzuna JF, Lara-Bueno A. Essential oils as a dietary additive for laying hens: performance, egg quality, antioxidant status, and intestinal morphology: a meta-analysis. Agriculture. 2023; 13(7): 1294. https://doi.org/10.3390/agriculture13071294

Petricevic V, Lukic M, Skrbic Z, Rakonjac S, Doskovic,V, Petricevic M, Stanojkovic A. The effect of using rosemary (Rosmarinus officinalis) in broiler nutrition on production parameters, slaughter characteristics, and gut microbiological population. Turkish Journal of Veterinary & Animal Sciences. 2018; 42(6): 658-664. https://doi.org/10.3906/vet-1803-53

Kebreab E, Liedke A, Caro D, Deimling S, Binder M, Finkbeiner M. Environmental impact of using specialty feed ingredients in swine and poultry production: A lifecycleassessment. Journal of Animal Science. 2016; 94 (6): 2664-2681. https://doi.org/10.2527/jas.2015-9036

Ashworth AJ, Chastain JP, Moore PA. Nutrient characteristics of poultry manure and litter. Animal manure: Production, characteristics, environmental concerns, and management. 2020; 67(1): 63-87. https://doi.org/10.2134/asaspecpub67.c5

Rostagno HS, Albino LFT, Donzelle J, Gomes PC, Oliveira RF, Lopes DC, Ferreira, AS, Barreto SLT, Euclides RF. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. 3ª Ed. Viçosa: UFV; 2011. 252p.

Apha - American Public Health Association. Standard methods for the examination of water and wastewater. 24th ed. Washington DC: APHA, AWWA, WEF, 2023, 1624p.

Bataglia OG, Furlani AMC, Teixeira JPF, Gallo JR. Métodos de análise química de plantas. 78 ed. Campinas: Instituto Agronômico; 1983. 48p. Portuguese.

Silva DJ, Queiroz AC. Análise de Alimentos: métodos químicos e biológicos.3ª Ed. Viçosa: Imprensa Universitária da UFV; 2002. 235p.

Malavolta E, Vitti GC, Oliveira SA. Micronutrientes, uma visão geral. In: Ferreira ME, Cruz MC. Micronutrientes na agricultura. Piracicaba: POTAFOS/CNPq, 1991. p.1-33.

Garcia ERM, Cruz FK, Santos TMB, Barbosa Filho JA, Gomes FOC, Xavier CAN. Characterisation and quantification of laying waste of fed with different corn particle size. Archivos de zootecnia. 2016; 65(250): 191-195. https://www.redalyc.org/articulo.oa?id=49545852012

Augusto, KVZ; Kunz, A. Tratamento de dejetos de aves poedeiras comerciais. In: Palhares JC, Kunz, A, editors. Manejo ambiental na avicultura. Concórdia: Embrapa suínos e aves. 2011, 153-174p.

Orrico Junior MAP, Orrico ACA, Lucas Junior J. Produção animal e o meio ambiente: uma comparação entre potencial de emissão de metano dos dejetos e a quantidade de alimento produzido. Engenharia Agrícola. 2011; 31(2): 399-410. https://doi.org/10.1590/S0100-69162011000200020

Ortiz FCG, Cappi N, Santos TMB, Silva PP. Teores de fósforo, nitrogênio e sólidos em dejetos de poedeiras alimentadas com milho com diferentes granulometrias. 5º Simpósio Sobre Recursos Naturais e Socioeconômicos do Pantanal, Corumbá- MS, 2010.

Zahan Z, Othman MZ. Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. Bioresource technology. 2019; 281(1): 286-295. https://doi.org/10.1016/j.biortech.2019.01.129

Afonso ARE, Foltin JP. A substituição da análise de demanda química de oxigênio (DQO) pela de carbono orgânico total (TOC) e elaboração de um fator (K) para conversão dos resultados das técnicas em efluentes industriais. Revista Brasileira de Processos Químicos. 2023; 4(1): 26-50. https://www.fateccampinas.com.br/rbpq/index.php/rbpq/article/view/32

Sanches DS, Garcia ERM, Santana PG, Andrade GC, Salmazzo GR. Aditivos no tratamento de dejetos de poedeiras comerciais. Research, Society and Development. 2021; 10(1): e19410111229-e19410111229. https://doi.org/10.33448/rsd-v10i1.11229

Kiehl EJ. Manual de compostagem maturação e qualidade do composto. Piracicaba: Editora Degaspari, 1998, 171p.

Toppel K, Kaufmann F, Schön H, Gauly M, Andersson R. Effect of pH lowering litter amendment on animal-based welfare indicators and litter quality in a European commercial broiler husbandry. Poultry Science. 2019; 98(3): 1181-1189. https://doi.org/10.3382/ps/pey489

Sousa FC, Tinôco IFF, Paula MO, Silva AL, Souza CF, Batista FJF, Barbari M. Medidas para minimizar a emissão de amônia na produção de frangos de corte: revisão. Revista Brasileira de Engenharia de Biossistemas. 2016, 10(1): 51-61. https://doi.org/10.18011/bioeng2016v10n1p51-61

Wang G, Liu LJ, Tao WJ, Xiao ZP, Pei X, Liu BJ, Ao TY. Effects of replacing inorganic trace minerals with organic trace minerals on the production performance, blood profiles, and antioxidant status of broiler breeders. Poultry science. 2019; 98(7): 2888-2895. https://doi.org/10.3382/ps/pez035

Qiu J, Lu X, Ma L, Hou C, He J, Liu B, Xu J. Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens. Asian-Australasian Journal of Animal Sciences. 2020; 33(4): 588. https://doi.org/10.5713/ajas.19.0270

Published

2024-07-26

How to Cite

CARVALHO, Kelly Cristina Nunes; XAVIER, Cristiane Almeida Neves; SILVA, Adriane de Andrade; GARCIA, Elis Regina de Moraes; SANCHES, Danilo de Souza; KIEFER, Charles; SANTOS, Tânia Mara Baptista dos. Qualitative and quantitative characterization of waste layers fed diets containing mineral sources and rosemary oil levels. Brazilian Animal Science/ Ciência Animal Brasileira, Goiânia, v. 25, 2024. DOI: 10.1590/1809-6891v25e-77674E. Disponível em: https://revistas.ufg.br/vet/article/view/77674. Acesso em: 6 dec. 2025.

Issue

Section

ANIMAL SCIENCE