Effect of Mentha piperita essential oil in the conservation of refrigerated tambatinga hybrid fish meat
DOI:
https://doi.org/10.1590/1809-6891v25e-76774EAbstract
The search for safer foods has led to increased research attention to discover natural alternatives to synthetic additives that are used in the food industry. Natural preservatives, such as essential oils (EOs) from plants, could increase fish conservation and even positively affect human health. Therefore, the objective of the study was to evaluate the effect of Mentha piperita EO on the physicochemical characteristics and concentration of microorganisms in chilled tambatinga (Colossoma macropomum × Piaractus brachypomum) meat. Mentha piperita EO was prepared at three concentrations (0%, 0.25% and 0.50%) in a solution containing distilled water, propylene glycol and Tween. The meat samples remained immersed in this solution for 60 min; then, they were packed in plastic packages and stored under refrigeration (± 0.4 °C) for 14 days. During this storage, pH, total volatile nitrogenous bases (TVB-N), peroxides, thiobarbituric acid reactive substances (TBARS) and counts of strict and facultative aerobic mesophilic microorganisms were determined. The major constituents found in M. piperita EO were geranial (32.28%), neral (18.64%) and geranic acid (6.98%). None of the EO concentrations affected TVB-N, but there were some changes to the pH. Both 0.25% and 0.50% EO reduced the formation of peroxides and TBARS. The growth of microorganisms was reduced by treatment with 0.50% EO. Based on the findings, 0.50% EO was more effective in reducing the deterioration of meat kept refrigerated for up to 14 days.
Downloads
References
Sarojnalini C, Hei A. Fish as an important food for quality life. In: Lagouri V. (Ed.). Functional Foods. IntechOpen, 2019. 77-97. https://doi.org/10.5772/intechopen.81947
Tanimoto S, Kondo R, Itonaga S, Domen A, Mabuchi R. Screening plant extracts for quality preservation of dark muscle fish flesh: a simple method. J Food Process Pres 2020; 44:e14315. https://doi.org/10.1111/jfpp.14315
Peixe BR. Associação Brasileira de Piscicultura: Anuário Brasileiro da Piscicultura PEIXE BR 2022. Available from: https://www.peixebr.com.br/anuario-2021/ (accessed: April 10, 2023).
Andreghetto F, Santana TC, Castro JS, Noleto KS, Teixeira EG. Desempenho zootécnico e bromatologia de tambatinga (Colossoma macropomum x Piaractus brachypomus, Characidae) alimentada com milheto (Pennisetum sp.). Braz J Dev 2020; 6(4):21818-21831. https://doi.org/10.34117/bjdv6n4-376
Costa TS, Silva RC, Pretto A, Monteiro OS, Siqueira JC, Baldisserotto B, Lopes JM. Effect of Lippia grata essential oil as a feed additive on the performance of tambatinga juveniles. Acta Amaz 2022; 52(2):122-130. https://doi.org/10.1590/1809-4392202102442
Gonçalves AA. Tecnologia do pescado: Ciência, Tecnologia, Inovação Legislação. São Paulo: Editora Atheneu; 2011. 608 p.
Dang HTT, Gudjonsdóttir M, Karlsdóttir MG, Nguyen MV, Tómasson T, Arason S. Stability of Golden redfish (Sebastes marinus) during frozen storage as affected by raw material freshness and season of capture. Food Sci Nutr 2018; 6(4):1065-1076. https://doi.org/10.1002/fsn3.648
Mattje LGB, Tormen L, Bombardelli MCM, Corazza ML, Bainy EM. Ginger essential oil and supercritical extract as natural antioxidants in tilapia fish burger. J Food Process Pres 2019; 43(5):e13942. https://doi.org/10.1111/jfpp.13942
Hassoun A, Karoui R. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit Rev Food Sci Nutr 2017; 57(9):1976-1998. https://doi.org/ 10.1080/10408398.2015.1047926
Huang Z, Liu X, Jia S, Zhang L, Luo Y. The effect of essential oils on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage. Int J Food Microbiol 2018; 266:52-59. https://doi.org/ 10.1016/j.ijfoodmicro.2017.11.003
Ribeiro JS, Santos MJMC, Silva LKR, Pereira LCL, Santos IA, Lannes SCS, Silva MV. Natural antioxidants used in meat products: A brief review. Meat Sci 2019; 148:181-188. https://doi.org/10.1016/j.meatsci.2018.10.016
Vieira BB, Mafra JF, Bispo ASR, Ferreira MA, Silva FL, Rodrigues AVN, Evangelista-Barreto NS. Combination of chitosan coating and clove essential oil reduces lipid oxidation and microbial growth in frozen stored tambaqui (Colossoma macropomum) fillets. LWT – Food Sci Technol 2019; 116:108546. https://doi.org/10.1016/j.lwt.2019.108546
Singh S, Chaurasia PK, Bharati SL. Functional roles of essential oils as an effective alternative of synthetic food preservatives: a review. J Food Process Pres 2022; 46:e16804. https://doi.org/10.1111/jfpp.16804
Dègnon RG, Allagbé AC, Adjou ES, Dahouenon-Ahoussi E. Antifungal activities of Cymbopogon citratus essential oil against Aspergillus species isolated from fermented fish products of Southern Benin. J Food Qual Hazards Control 2019; 6(2):53-57. https://doi.org/10.18502/jfqhc.6.2.955
Reddy DN, Al-Rajab AJ, Sharma M, Moses MM, Reddy GR, Albratty M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha piperita L (peppermint) essential oils. J King Saud Univ Sci 2019; 31(4):528-533. https://doi.org/10.1016/j.jksus.2017.07.013
Ferreira LC, Cruz MG, Lima TBC, Serra BNV, Chaves FCM, Chagas EC, Ventura AS, Jerônimo GT. Antiparasitic activity of Mentha piperita (Lamiaceae) essential oil against Piscinoodinium pillulare and its physiological effects on Colossoma macropomum (Cuvier, 1818). Aquaculture 2019; 512:734343. https://doi.org/10.1016/j.aquaculture.2019.734343
Souza Silva LT, Pereira UP, Oliveira HM, Brazil EM, Pereira SA, Chagas EC, Jesus GFA, Cardoso L, Mouriño JLP, Martins ML. Hemato-immunological and zootechnical parameters of Nile tilapia fed essential oil of Mentha piperita after challenge with Streptococcus agalactiae. Aquaculture 2019; 506:205-211. https://doi.org/10.1016/j.aquaculture.2019.03.035
Cai L, Cao A, Li Y, Song Z, Leng L, Li J. The effects of essential oil treatment on the biogenic amines inhibition and quality preservation of red drum (Sciaenops ocellatus) fillets. Food Control 2015; 56:1-8. https://doi.org/10.1016/j.foodcont.2015.03.009
Adams RP. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. 4nd ed. Carol Stream, IL: Allured Publishing Corporation, 2007. 804p.
NIST/EPA/NIH Mass Spectral Library 2011. 5nd ed. Hoboken, NJ: Wiley, 2011.
Fernandes YML, Matos JVS, Lima CA, Tardini AM, Viera FAP, Maia JGS, Monteiro OS, Longato GB, Rocha CQ. Essential oils obtained from aerial Eugenia punicifolia parts: Chemical composition and antiproliferative potential evidenced through cell cycle arrest. J Braz Chem Soc 2021; 32(7):1381-1390. https://doi.org/10.21577/0103-5053.20210036
Dang HTT, Gudjónsdóttir M, Tómasson T, Nguyen MV, Karlsdóttir MG, Arason S. Influence of processing aditives, packaging and storage conditions on the physicochemical stability of frozen Tra catfish (Pangasius hypophthalmus) fillets. J Food Eng 2018: 238: 148-155. https://doi.org/10.1016/j.jfoodeng.2018.06.021
Savay da Silva LK, Riggo R, Martins PE, Galvão JA, Oetterer M. Otimização e padronização do uso da metodologia para determinação de bases nitrogenadas voláteis totais (BNVT) em camarões Xyphopenaeus kroyeri. Braz J Food Technol 2008: 20:138-144.
Chapman RA, Mackay K. The estimation of peroxides in fats and oils by the ferric thiocyanate method. JAOCS J Am Oil Chem Soc 1949; 26:360–363.
Buege JA, Aust SD. Microsomal lipid peroxidation. Meth Enzymol 1978; 52:302-310.
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 62 de 26 de agosto de 2003. Dispõe sobre os Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. Diário Oficial da União. (https://www.normasbrasil.com.br/norma/instrucao-normativa-62-200375165.html) (accessed: 16 May, 2023).
Sousa Barros A, Morais SM, Ferreira PAT, Vieira IGP, Craveiro AA, Fontenelle ROS, Menezes JESA, Silva FWF, Sousa HA. Chemical composition and functional properties of essential oils from Mentha species. Ind Crops Prod 2015; 76:557-564. https://doi.org/10.1016/j.indcrop.2015.07.004
Chagas EC, Majolo C, Monteiro PC, Oliveira MR, Gama PE, Bizzo HR, Chaves FCM. Composition of essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. J Essent Oil Res 2020; 32(3):209-215. https://doi.org/10.1080/10412905.2020.1741457
Agostini F, Santos ACA, Rossato M, Pansera MR, Santos PL, Serafini LA, Molon R, Moyna P. Essential oil yield and composition of Lamiaceae species growing in Southern Brazil. Braz Arch Biol Technol 2009; 52(2):473-478. https://doi.org/10.1590/S1516-89132009000200026
Freire MM, Jham GN, Dhingra OD, Jardim CM, Barcelos RC, Valente VMM. Composition, antifungal activity and main fungitoxic components of the essential oil of Mentha piperita L. J Food Saf 2012. 32:29-36. https://doi.org/10.1111/j.1745-4565.2011.00341.x
Souza CF, Baldissera MD, Baldisserotto B, Heinzmann BM, Martos-Sitcha JA, Mancera JM. Essential Oils as Stress-Reducing Agents for Fish Aquaculture: A Review. Front Physiol 2019; 10:1-17. https://doi.org/10.3389/fphys.2019.00785
Tajidin NE, Ahmad SH, Rosenani AB, Azimah H, Munirah M. Chemical composition and citral content in lemongrass (Cymbopogon citratus) essential oil at three maturity stages. Afr J Biotechnol 2012; 11(11):2685-2693. https://doi.org/10.5897/AJB11.2939
Lu W-C, Huang D-W, Wang C-CR, Yeh C-H, Tsai J-C, Huang Y-T, Li P-H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal 2018; 26(1):82-89. https://doi.org/10.1016/j.jfda.2016.12.018
Rampelotto C, Speroni CS, Conte L, Pianesso D, Machado IS, Rodrigues R, Minuzzi NM, Adorian TJ, Klein B, Wagner R, Baldisserotto B, Silva LP, Heinzmann BM, Menezes CR, Emanuelli T. Microencapsuled lemongrass (Cymbopogon flexuosus) essential oil supplementation on quality and stability of silver catfish fillets during frozen storage. J Aquat Food Prod 2021; 30(9):1124-1141. https://doi.org/10.1080/10498850.2021.1974137
Lis-Balchin M, Deans SG, Eaglesham E. Relationship between bioactivity and chemical composition of commercial essential oils. Flavour Frag J 1998; 13(2):98-104. https://doi.org/10.1002/(SICI)1099-1026(199803/04
Kuroda CN, Pretto A, Camargo ACC, Stefanello CM, Rosa GM, Ferrigolo FRG, Gollino GP, Ribeiro VB, Bender ABB. Conservation and quality of grumatã (Prochilodus lineatus) fillets after different depuration periods and frozen storage. Cienc Anim Bras 2020; 21:e-62701. https://doi.org/10.1590/1809-6891v21e-62701
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Decreto n° 9.013 de 29 de março de 2017. Dispõe sobre a Inspeção Industrial E Sanitária De Produtos De Origem Animal. Diário Oficial da União. Available from: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/decreto/D9013.htm (accessed: May 15, 2023).
Soares KMDP, Gonçalves AA. Qualidade e segurança do pescado. Rev Inst Adolfo Lutz 2012; 71(1):1-10.
Karami B, Moradi Y, Motallebi AA, Hosseini E, Soltani M. Effects of frozen storage on fatty acids profile, chemical quality indices and sensory properties of red tilapia (Oreochromis niloticus × Tilapia mosambicus) fillets. Iran J Fish Sci 2013; 12(2):378-388.
Afrin F, Islam MM, Rasul MG, Sarkar MSI, Yuan C, Shah AKMA. Effects of seaweed extracts on the quality and shelf life of Nile tilapia (Oreochromis niloticus) fillets during frozen storage. Food Chem Adv 2023; 3:100388. https://doi.org/10.1016/j.focha.2023.100388
Chandra H, Farooq Ah A. Lipoxigenase inhibitory, antioxidant, and antimicrobial activities of selected essential oils. Asian J Pharm Clin Res 2014; 7:79-83.
El-Hanafy AEA, Shawky HA, Ramadan MF. Preservation of Oreochromis niloticus fish using frozen green tea extract: impact on biochemical, microbiological and sensory characteristics. J Food Process Pres 2011; 35:639-646. https://doi.org/10.1111/j.1745-4549.2011.00513.x
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Animal Science/ Ciência Animal Brasileira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).