Artificial neural networks for the management of poultry industry: a simulation based on the broiler production chain
DOI:
https://doi.org/10.1590/1809-6891v24e-75400EAbstract
The aim of this study was to predict production indicators and to determine their potential economic impact on a poultry integration system using artificial neural networks (ANN) models. Forty zootechnical and production parameters from broiler breeder farms, one hatchery, broiler production flocks, and one slaughterhouse were selected as variables. The ANN models were established for four output variables: “saleable hatching”, “weight at the end of week 5,” “partial condemnation,” and “total condemnation” and were analyzed in relation to the coefficient of multiple determination (R2), correlation coefficient (R), mean error (E), mean squared error (MSE), and root mean square error (RMSE). The production scenarios were simulated and the economic impacts were estimated. The ANN models were suitable for simulating production scenarios after validation. For “saleable hatching”, incubator and egg storage period are likely to increase the financial gains. For “weight at the end of the week 5” the lineage (A) is important to increase revenues. However, broiler weight at the end of the first week may not have a significant influence. Flock sex (female) may influence the “partial condemnation” rates, while chick weight at first day may not. For “total condemnation”, flock sex and type of chick may not influence condemnation rates, but mortality rates and broiler weight may have a significant impact.
Keywords: artificial intelligence; data management; economic impact; poultry production
Downloads
References
Van Limbergen T, Sarrazin S, Chantziaras I, Dewulf J, Ducatelle R, Kyriazakis I, McMullin P, Méndez J, Niemi JK, Papasolomontos S, Szeleszczuk P, Van Erum J, Maes D. Risk factors for poor health and performance in European broiler production systems. BMC Vet Res 2020;16:287. https://doi.org/10.1186/s12917-020-02484-3
Ramírez-Morales I, Fernández-Blanco E, Rivero D, Pazos A. Automated early detection of drops in commercial egg production using neural networks. Brit Poult Sci 2017; 58:739-747. https://doi.org/10.1080/00071668.2017.1379051
Tedeschi LO. Mathematical modeling in ruminant nutrition: approaches and paradigms, extant models, and thoughts for upcoming predictive analytics. J Anim Sci 2019; 97:1921-1944. https://doi.org/10.1093/jas/skz092
Vanneschi L., Castelli M. Multilayer perceptrons. In: Ranganathan S., Nakai K., Schonbach C. Encyclopedia of Bioinformatics and Computational Biology. Amsterdam: Elsevier; 2018. p. 612-620.
Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NAE, Arshad H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018; 4(11):e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
Safari-Aliqiarloo A, Faghih-Mohammadi F, Zare M, Seidavi A, Laudadio V, Selvaggi M, Tufarelli V. Artificial neural network and non-linear logistic regression models to fit the egg production curve in commercial-type broiler breeders. Eur Poult Sci 2017; 81. http://doi.org/10.1399/eps.2017.212
Salle CTP, Guahyba AS, Wald VB, Silva AB, Salle FO, Nascimento VP. Use of artificial neural networks to estimate production parameters of broiler breeders in the breeding phase. Brit Poult Sci 2003; 44: 211-217. https://doi.org/10.1080/0007166031000088361
Salle CTP, Spohr A, Furian TQ, Borges KA, Rocha DT, Moraes HLS, Nascimento VP. 2018. Inteligência Artificial: o futuro da produção avícola. Avicultura Industrial. Nº 7, ano 109, ed. 1279, p. 38-42
Almeida LGB, Oliveira EB, Furian TQ, Borges KA, Rocha DT, Salle CTP, Moraes HLS. Artificial neural networks on eggs production data management. Acta Scient Vet 2020; 48:1-7. https://doi.org/10.22456/1679-9216.101462
Oliveira EB, Almeida LGB, Rocha DT, Furian TQ, Borges KA, Moraes HLS, Nascimento VP, Salle CTP. Artificial neural networks to predict egg production traits in commercial laying breeder hens. Braz J Poult Sci 2022; 24(4):1-10. http://dx.doi.org/10.1590/1806-9061-2021-1578
Carvalho D, Moraes LB, Chitolina GZ, Herpich JI, Osório FS, Fallavena LCB, Moraes HLS, Salle CTP. Evaluation of thymic lymphocyte loss of broiler using Digital Analysis of the Lymphoid Depletion System (ADDL). Pesq Vet Bras 2016; 36(07):652-656. https://doi.org/10.1590/S0100-736X2016000700016
Moraes LB, Osório FS, Salle FO, Souza GF, Moraes HLS, Fallavena LCB, Santos LR, Salle CTP. Evaluation of folicular lymphoid depletion in the Bursa of Fabricius: an alternative methodology using digital image analysis and artificial neural networks. Pesq Vet Bras 2010; 30(4):340-344. https://doi.org/10.1590/S0100-736X2010000400010
Abreu LHP, Yanagi Junior T, Yamid MB, Hernández-Julio YF, Ferraz PFP. Artificial neural networks for prediction of physiological and productive variables of broilers. Eng Agric 2020; 40(1):1-9. https://doi.org/10.1590/1809-4430-Eng.Agric.v40n1p1-9/2020
Lourençoni D, Junior TY, Abreu PG, Campos AT, Yanagi SNM. Productive responses from broiler chickens raised in different commercial production systems – part I: fuzzy modeling. Eng Agric 2019; 39:1-10. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n1p1-10/2019
van der Klein SAS, More-Bayona JA, Barreda DR, Romero LF, Zuidhof MJ. Comparison of mathematical and comparative slaughter methodologies for determination of heat production and energy retention in broilers. Poult Sci 2020; 99:3237-3250. https://doi.org/10.1016/j.psj.2020.02.005
You J, Lou E, Afrouziyeh M, Zukiwsky NM, Zuidhof MJ. Using an artificial neural network to predict the probability of oviposition events of precision-fed broiler breeder hens. Poultry Science, 2021; 100(8):101187. https://doi.org/10.1016/j.psj.2021.101187
Mendes AS, Gudoski DC, Cargnelutti AF, Silva EJ, Carvalho EH, Morello GM. Factors that impact the financial performance of broiler production in southern states of Paraná. Braz J Poult Sci 2014; 16(1):113-120. https://doi.org/10.1590/S1516-635X2014000100016
NeuroShell Predictor. Ward Systems Group, version 4.0 TM. Frederick, MD, USA. (http://www.wardsystems.com/predictor.asp)
Avisite. Estatísticas e preços. Campinas: Mundo Agro Editora Ltda. Available from: https://www.avisite.com.br/estatisticas-precos (accessed: July 20, 2022)
NeuroShell Run-Time Server. Ward Systems Group, version 4.0 TM. Frederick, MD, USA. (http://www.wardsystems.com/predictor.asp)
NeuroShell Run-Time Server. Ward Systems Group, version 4.0 TM. Frederick, MD, USA. (http://www.wardsystems.com/rtserver.asp)
NeuroShell Fire. Ward Systems Group, version 4.0 TM. Frederick, MD, USA. (http://www.wardsystems.com/rtserver.asp)
Tona K, Onagbesan OM, Kamers B, Everaert N, Bruggeman V, Decuypere E. Comparison of Cobb and Ross strains in embryo physiology and chick juvenile growth. Poult Sci 2010; 89(8):1677-1683. https://doi.org/10.3382/ps.2009-00386
Arruda JNT, Mendes AS, Guirro ECBP, Schneider M, Sikorski RR, Sausen L, Dias ER, Bonamigo DV. Live performance, carcass yield, and welfare of broilers of different genetic strains reared at different housing densities. Braz J Poult Sci 2016; 18(1):141-152. https://doi.org/10.1590/18069061-2015-0092
Khalid N, Ali MM, Ali Z, Amin Y, Ayaz M. Comparative productive performance of two broiler strains in open housing system. Advancem Life Sci 2021; 8(2):124-127.
Mendes AS, Paixão SJ, Restelatto R, Reffatti R, Possenti JC, Moura DJ, Morello GMZ, Carvalho TMR. Effects of initial body weight and litter material on broiler production. Braz J Poult Sci 2011; 13(3):165-170. https://doi.org/10.1590/S1516-635X2011000300001
Michalczuk M, Stepinska M, Lukasiewicz M. Effect of the initial body weight of Ross 308 chicken broilers on the rate of growth. Animal Science 2011; 49: 121-125. https://doi.org/10.1590/S1516-635X2011000300001
Jiang RS, Yang N. Effect of day-old body weight on subsequent growth, carcass performances and levels of growth-related hormones in quality meat-type chicken. European Poultry Science 2007; 71(2):93-96.
Yerpes M, Llonch P, Manteca X. Factors associated with cumulative first-week mortality in broiler chicks. Animals 2020; 10(2):310. https://doi.org/10.3390/ani10020310
Santana AP, Murata LS, Freitas CG, Delphino MK, Pimentel CM. Causes of condemnation of carcasses from poultry in slaughterhouses located in State of Goiás, Brazil. Cienc Rur 2008; 38(9):2587-2592. https://doi.org/10.1590/S0103-84782008005000002
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Animal Science/ Ciência Animal Brasileira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).























