‘Alecrim Pimenta’ nanoformulated essential oil (Lippia sidoides) as additive in consortium silages

Authors

DOI:

https://doi.org/10.1590/1809-6891v24e-73623E

Abstract

The presence of spoilage microorganisms in forage interferes with the fermentation process of silage, due to competition with lactic acid bacteria for substrate, generating losses and influencing the nutritional value of the ensiled material. Thus, the objective is to evaluate the effect of “Alecrim Pimenta” essential oil (Lippia sidoides) and nanoformulated thymol on microbiological, fermentative and aerobic stability profile of sorghum (Sorghum bicolor cv. BRS Ponta Negra) silage intercropped with Paiaguás grass (Urochloa brizantha cv. BRS Paiaguás). A 4 x 3 factorial design was adopted, with four additives applied to the silages (control treatment; nanoformulated “Alecrim Pimenta” essential oil (OEN); 62% nanoformulated thymol; and 100% pure nanoformulated thymol), associated with three silo period times (15, 30 and 45 days), with five replications per treatment, totaling 60 mini silos. The Clostridium population was higher in the control treatment and in the OEN. The Lactobacillus population decreased with the increase in silo opening time. Higher aerobic stabilities were recorded in silages with 100% nanoformulated thymol with opening at 15 days; and silages with 62% nanoformulated Thymol (opening period at 30 and 45 days). Silages with 100% thymol provided higher losses of dry matter, gases and effluents, while the use of OEN provided lower losses of dry matter and gases. Silos opened at 45 days showed higher losses of dry matter, gases and effluents. Sorghum and Paiaguás grass silages that received nanoformulated thymol were more efficient in controlling Clostridium and Lactobacillus populations, and this additive improved the aerobic stability of the silage.
Keywords: aerobic stability; silage microbiology; sustainability; thymol

Downloads

Download data is not yet available.

References

Aguilar-Sánchez R, Munguía-Pérez R, Reyes-Jurado F, Navarro-Cruz AR, Cid-Pérez TS, Hernández-Carranza P, Beristain-Bauza SD, Ochoa-Velasco CE, Avila-Sosa R. Structural, physical, and antifungal characterization of starch edible films added with nanocomposites and Mexican oregano (Lippia berlandieri Schauer) essential oil. Molecules. 2019; 25(12): 2340.

Bruna LD, Priscila FC, Mateus SD, Dalmarcia DS, Felipe RD, Rosangela RD, Ped RR, Talita PD, Fabricio SC, Gil RR. Control of papaya fruits anthracnose by essential oils of medicinal plants associated to different coatings. Journal of Medicinal Plants Research. 2020; 30(6): 239-46.

Faraone N, Hillier NK, Cutler GC. Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae). Plos One, 2015; 10: 1-12.

Schmidt P, Novinski CO, Junges D, Almeida R, De Souza CM. Concentration of mycotoxins and chemical composition of corn silage: a farm survey using infrared thermography. Journal of Dairy Science, 2015; 98: 6609-6619.

Chaves AV, John BAAH, Yuxi W, Tim A, McAllister, CB. Effects of cinnamon leaf, oregano and sweet orange essential oils on fermentation and aerobic stability of barley silage. Journal of the Science of Food and Agriculture, 2012; 92(4): 906-915.

Cantoia Junior R, Capucho E, Garcia TM, Del Valle TA, Campana M, Zilio EMC, Azevedo EB, Morais JPG. Lemongrass essential oil in sugarcane silage: Fermentative profile, losses, chemical composition, and aerobic stability. Animal Feed Science and Technology, 2020; 260: 114371.

Soycan-Önenç S, Koc F, Coşkuntuna L, Özdüven ML, Gümüş T. The effect of oregano and cinnamon essential oils on fermentation quality and aerobic stability of field pea silages. Asian-Australasian Journal of Animal Sciences, 2015; 28(9): 1281.

Besharati M, Palangi V, Niazifar M, Nemati Z. Comparison study of flaxseed, cinnamon and lemon seed essential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agriculturae Slovenica. 2020; 15(2): 455-62.

Esmaili F, Sanei-Dehkordi A, Amoozegar F, Osanloo M. A review on the use of essential oil-based nanoformulations in control of mosquitoes. Biointerface Research in Applied Chemistry. 2021;11(5):12516-29.

Cruz EM, Mendonça MC, Blank AF, Sampaio TS, Pinto JA, Gagliardi PR, Junior LF, de Lima RS, Nunes RS, Warwick DR. Lippia gracilis Schauer essential oil nanoformulation prototype for the control of Thielaviopis paradoxa. Industrial Crops and Products. 2018; 1: 117:245-51.

Liao W, Badri W, Dumas E, Ghnimi S, Elaïssari A, Saurel R, Gharsallaoui A. Nanoencapsulation of essential oils as natural food antimicrobial agents: an overview. Applied Sciences. 2021; 22(13): 5778.

Oliveira AP, Santana AS, Santana EDR, Lima APS, Faro RRN, Nunes RS, Lima AD, Blank AF, Araújo APA, Cristaldo PF, Bacci L. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Industrial crops and products, 2017; 107: 198-205.

Santos Filho JR, Sousa BM, Fagundes JL, Backes AA, Silva JW, Andrade GS, Santos AL, Florêncio RS, Silva VC. Establishment of paiaguas palisadegrass in monoculture or in an integration system with other crops. Ciência Animal Brasileira. 2021; 22: e-68211.

Silva CM, Amaral PNCD, Baggio RA, Tubin JSB, Conte RA, Pivo JCD, Krahl G, Zampar A, Paiano D. Estabilidade de silagens de grãos úmidos de milho e milho reidratado. Revista Brasileira de Saúde e Produção Animal, 2016; 17(3): 331-343.

AOAC - Association of Official Analytical Chemists. Official Methods of Analysis. 18th ed. Arlington: AOAC International; 2005.

Pinedo LA, dos Santos Arévalo BR, dos Santos BR, Cortes LC, Ribeiro AA, Amorim DS, Chacón SA, de Oliveira PV, Firmino SS, Gomes RN. Dry matter losses and fermentative profile of sorghum silages cultivated in the Western Amazon. Research, Society and Development. 2022; 16(8): e20811830668.

Coelho MM, Gonçalves LC, Rodrigues JAS, Keller KM, Anjos GVDSD, Ottoni D, Jayme DG. Chemical characteristics, aerobic stability, and microbiological counts in corn silage re-ensiled with bacterial inoculant. Pesquisa Agropecuária Brasileira, 2018; 53: 1045-1052.

SAS Institute. Statistical Analysis System: user guide [CD-ROM]. Version 8. Cary (NC): SAS Insitute Inc., 2002. (http://www.ncbi.nlm.nih.gov/books/NBK7244/).

Hodjatpanah‐Montazeri A, Mesgaran MD, Vakili A, Tahmasebi AM. Effect of essential oils of various plants as microbial modifier to alter corn silage fermentation and in vitro methane production. Iran Journal of Applied Animal Sciences, 2016; 6: 269–276.

Driehuis F, Wilkinson JM, Jiang Y, Ogunade I, Adesogan AT. Silage review: Animal and human health risks from silage. Journal of Dairy Science, 2018; 101(5): 4093-4110.

González JOW, Gutiérrez MM, Ferrero AA, Band BF. Essential oils nanoformulations for stored-product pest control –characterization and biological properties. Chemosphere, 2014; 130-138.

González JOW, Stefanazzi N, Murray AP, Ferrero AA, Band BF. Novel nanoinsecticides based on essential oils to control the German cockroach. Journal of Pest Science, 2015; 88(2): 393-404.

Montefuscoli AR, González JOW, Palma SD, Ferrero AA, Band BF. Design and development of aqueous nanoformulations for mosquito control. Parasitology research, 2014; 113(2): 793-800.

Zheng M, Niu D, Zuo S, Mao P, Meng L, Xu C. The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage. Italian Journal of Animal Science. 2018; 3(2):336-46.

Marques KO, Jakelaitis A, Guimarães KC, Pereira LS. Perfil agronômico, fermentativo e bromatológico da silagem obtida do consórcio entre milho e soja. Research, Society and Development, 2021; 10(1): e41410111925-e41410111925.

Soundharrajan I, Park HS, Rengasamy S, Sivanesan R, Choi KC. Application and Future Prospective of Lactic Acid Bacteria as Natural Additives for Silage Production—A Review. Applied Sciences. 2021 Sep 1;11(17):8127.

Santos CP, Pinto JAO, Santos CA, Cruz EMO, Arrigoni-Blank MF, Andrade TM, Santos, DA, Alves PB, Blank AF. Harvest time and geographical origin affect the essential oil of Lippia gracilis Schauer. Journal of Crop Protection, 2016; 79: 205–210.

Souza AA, Dias NAA, Piccoli RH, Bertolucci SKV. Composição química e concentração mínima bactericida de dezesseis óleos essenciais sobre Escherichia coli enterotoxigênica. Revista Brasileira de Plantas Medicinais, 2016; 18: 105-112.

Samba N, Aitfella-Lahlou R, Nelo M, Silva L. Coca., R.; Rocha, P.; López Rodilla, JM. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules. 2021; 26: 2-28.

Published

2022-12-26

How to Cite

SOUSA, B. M. de L.; SANTOS, S. de J.; BACKES, A. A.; SILVA, C. M.; FAGUNDES, J. L.; BLANK, A. F.; FILHO, J. R. dos S. ‘Alecrim Pimenta’ nanoformulated essential oil (Lippia sidoides) as additive in consortium silages. Brazilian Animal Science/ Ciência Animal Brasileira, Goiânia, v. 24, 2022. DOI: 10.1590/1809-6891v24e-73623E. Disponível em: https://revistas.ufg.br/vet/article/view/73623. Acesso em: 7 mar. 2025.