Addition of orange, pineapple and beet juices as extenders for cryopreservation of ram semen
DOI:
https://doi.org/10.1590/1809-6891v24e-72745EAbstract
Searching for improvements in semen cryopreservation, natural substances are commonly studied focusing to improve the sperm quality. The aim of this study were evaluated the effect of adding orange, pineapple, and beet juices in different concentrations and combinations to the ram semen cryopreservation extender. Five ejaculates from five adult rams were used. The semen pool was diluted in egg yolk-based extender and mixed with the following 15 treatments (at a final concentration of 400.10⁶ sptz/mL): orange 10% (O10) and 15% (O15); pineapple 10% (P10) and 15% (P15); beet 10% (B10) and 15% (B15); pineapple + orange 10% (PO10) and 15% (PO15); pineapple + beet 10% (PB10) and 15% (PB15); beet + orange 10% (BO10) and 15% (BO15); pineapple + beet + orange 10% (PBO10) and 15% (PBO15); and the control group (CON). Post-thaw in 0.25 mL straws semen quality analysis of cryopreserved semen was performed by CASA and flow cytometry. Analysis of variance (PROC GLM) was carried out and the averages were compared using the SNK test. Pearson's correlation test was also performed. No effect was noted in the addition of juices to the semen extender prior to cryopreservation. Post-thawed, although, statistically similar to the control group, the total motility of the B10 group reached acceptable standards of total motility. In addition, B10 group showed the highest values (p<0.05) of progressive motility than control group or other treatments. The addition of 10% beet juice to the ram semen extender can improve the cryopreservation of sperm motility.
Keywords: antioxidant; freezing; sperm; semen extender.
Downloads
References
Holt WV. Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology. 2000; 53:47-58. Available from: https://doi.org/10.1016/S0093-691X(99)00239-3
Bucak MN, Atessahin A, Yuce A. Effect of anti-oxidants and oxidative stress parameters on ram semen after the freeze-thawing process. Small Ruminant Research. 2008. 75:128-134. Available from: https://doi.org/10.1016/j.smallrumres.2007.09.002
Castelo TS, Frota TR, Silva AR. Considerações sobre a criopreservação do sêmen de caprinos. Acta Veterinaria Brasilica. 2008. 2:67-75. Available from: https://doi.org/10.21708/avb.2008.2.3.885
Câmara DR, Silva SV, Almeida FC, Nunes JF, Guerra MMP. Effects of antioxidants and duration of pre-freezing equilibration on frozen-thawed ram semen. Theriogenology. 2011. 76:341-350. Available from: https://doi.org/10.1016/j.theriogenology.2011.02.013
Aitken RJ, Baker MA. Oxidative stress and male reproductive biology. Reproduction, Fertility and Development., 2004. 16:581-588. Available from: https://doi.org/10.1071/RD03089
Savi PAP, Zavarez LB, Kipper BH, Feliciano MAR, Vicente WRR, Oliveira MEF. Uso de antioxidantes em meios diluidores para sêmen ovino: revisão de literatura. Ars Veterinaria, 2015. 31(1):12-18. Available from: http://dx.doi.org/10.15361/2175-0106.2015v31n1p12-18
Anwar F, Ali M, Hussain AI, Shahid M. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare MILL.) seeds from Pakistan. Flavour Fragance Journal, 2009. 24:170-176. Available from: https://doi.org/10.1002/ffj.1929
Zhong R, Zhou D. Oxidative stress and role of natural plant derived antioxidants in animal reproduction. Journal of Integrative Agriculture, 2013. 12:1826-1838. Available from: https://doi.org/10.1016/S2095-3119(13)60412-8
Aboagla EME, Terada T. Effects of egg yolk during the freezing step of cryopreservation on the viability of goat spermatozoa. Theriogenology, 2004. 62:1160-1172. Available from: https://doi.org/10.1016/j.theriogenology.2004.01.013
Gardner PT, White TAC, Mcphai DB, Duthie GG. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chemistry, 2000. 68:471-474. Available from: https://doi.org/10.1016/S0308-8146(99)00225-3
Cutler GJ, Nettleton JA, Ross JA. Dietary flavonoid intake and risk of cancer in postmenopausal women: The Iowa Women's Health Study. International Journal of Cancer, 2008. 123:664-671. Available from: https://doi.org/10.1002/ijc.23564
Vinson JA, Hao Y, Su X, Zubik L. Phenol Antioxidant Quantity and Quality in Foods: Vegetables. Journal of Agriculture and Food Chemistry., 1998. 46:3630-3634. Available from: https://doi.org/10.1021/jf980295o
Mohdaly AA, Sarhan MA, Smetanska I, Mahmoud A. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. Journal of the Science of Food and Agriculture, 2010. 90:218-226. Available from: https://doi.org/10.1002/jsfa.3796
National Research Council, NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press, Washington DC, 2007. The Nat. Acad. Press. 2007
Adeyemo OK, Adeyemo OA, Oyeyemi MO, Agbede AS. Effect of semen extenders on the motility and viability of stored African Catfish (Clarias gariepinus) spermatozoa. Journal of Applied Science and Environmental Management, 2007. 11:13-16. Available from: https://doi.org/10.4314/jasem.v11i1.46827
Daramola JO, Adekunle EO, Onagbesan OO, Oke OE, Ladokun, AO, Abiona JA, Abioja MO, Oyewusi IK, Oyewusi JA, Isah OA, Sogunle OM., Adeleke MA. Protective effects pf fruit-juices on sperm viability of west African dwarf goat bucks during cryopreservation. Animal Reproduction, 2016. 13:7-13. Available from: http://dx.doi.org/10.4322/1984-3143-AR726
Pavaneli APP, Recuero S, Chaves BR, Garcia-Bonavila E, Llavanera M, Pinart E, Bonet S, Andrade AFC, Yest M. The presence of seminal plasma during liquid storage of pig spermatozoa at 17ºC modulates ability to elicit in vitro capacitation and trigger acrosomal exocytosis. International Journal of Molecular Sciences, 2020. 21:4520. Available from: https://doi.org/10.3390/ijms21124520
Batissaco L, Arruda RP, Alves MBR, Andrade MT, Lemes KM, Prado-Filho RR, Almeida TG, Andrade AFC, Celeghini ECC. Cholesterol-loaded cyclodextrin is efficient in preserving sperm quality of cryopreserved ram semen with low freezability. Reproductive Biolology, 2020. 20:14-24. Available from: https://doi.org/10.1016/j.repbio.2020.01.002
Vašíček J, Svoradová A, Baláži A, Jurčík A, Macháč M, Chrenek P. Ram semen quality can be assessed by flow cytometry several hours after post-fixation. Zygote, 2021. 29:130-137. Available from: https://doi.org/10.1017/S0967199420000581
Manjunath P. New insights into the understanding of the mechanism of sperm protection by extender components. Animal Reproduction, 2012. 9:809-815. Available from:https://www.animalreproduction.org/article/5b5a6053f7783717068b46cc/pdf/animreprod-9-4-809.pdf
Colégio Brasileiro de Reprodução Animal – CBRA, 2013. Manual para exame andrológico e avaliação de sêmen animal, 3, 104.
Maxwell WMC, Salamon S. Liquid storage of ram semen: a review. Reproduction, Fertility and Development, 1993. 5:613-638. Available from: https://doi.org/10.1071/RD9930613
Motlagh MK, Sharafi M, Zhandi M, Mohammadi-Sangcheshmeh, A, Shakeri M, Soleimani M, Zeinoaldini S. Antioxidant effect of rosemary (Rosmarinus officinalis L) extract in soybean lecithin-based semen extender following freeze-thawing process of ram sperm. Cryobiology, 2014. 69:217-222. Available from: https://doi.org/10.1016/j.cryobiol.2014.07.007
Aitken RJ. Pathophysiology of human spermatozoa. Current Opinion in Obstetrics & Ginecology, 1994. 6:128-135. Available from: https://europepmc.org/article/MED/8193251
Bartoov B, Bar-Sagie D, Mayevsky A. The effect of pH on ram sperm collective motility driven by mitochondrial respiration. International Journal of Androlology, 1980. 3:602-612. Available from: https://doi.org/10.1111/j.1365-2605.1980.tb00148.x
Azevedo HC, Machado R, Simplício AA, Soares AT. Características do sêmen caprino congelado: influência do tipo de palheta e concentração espermática. Rev. Científica Rural, 2000. 5:148-157. Available from: http://www.alice.cnptia.embrapa.br/alice/handle/doc/45681
Wruss J, Waldenberger G, Huermer S, Uygun P, Lanzerstorfer P, Muller U, Hoglinger O, Webhuber J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 2015. 42:46-55. Available from: https://doi.org/10.1016/j.jfca.2015.03.005
Fukuhara R, Nishikawa Y. Effects of various substrates on respiration, glycolysis and motility of goat spermatozoa. Japanese. Journal of Zootechnical Science, 1973. 44:271-274. Available from: https://www.jstage.jst.go.jp/article/chikusan1924/44/5/44_5_271/_pdf
Simón BF, Pérez-Ilzarbe J, Hernández T, Gómez-Cordovés C, Estrella I. Importance of phenolic compounds for the characterization of fruit juices. Journal of Agriculture and Food Chemistry, 1992. 40:1531-1535. Available from: https://doi.org/10.1021/jf00021a012
Melo EA, Maciel MIS, Galvão de Lima VLA, Nascimento RJ. Capacidade antioxidante das frutas. Revista Brasileira de Ciencias Farmaceuticas, 2008. 44:193-200. Available from: https://doi.org/10.1590/S1516-93322008000200005
Malo C, Gil R, Cano N, Gonzales V, Luño V. Fennel (Foeniculum vulgare) provides antioxidante protection for boar semen cryopreservation. Andrologia, 2012. 44:710-715. Available from: https://doi.org/10.1111/j.1439-0272.2011.01254.x
Daghigh-Kia H, Olfati-Karaji R, Hoseinkhani A, Ashrafi I. Effect of rosemary (Rosmarinus officinalis) extracts and glutathione antioxidants on bull semen quality after cryopreservation. Spananish Journal of Agriculture Research, 2014. 12(1):98-105. Available from: https://doi.org/10.5424/sjar/2014121-4486
Gil L, Mascaró F, Mur P, Gale I, Silva A, González N, Malo C, Cano R. Freezing ram semen: The effect of combination of soya and rosemary essences as freezing extender on post-thaw sperm motility. 10th Int Cong Spanish Association of Animal Reproduction (AERA), Cáceres (Spain), June 2-5. p: 91. 2010.
Baghshahi H, Riasi A, Mmahdavi AH, Shirazi A. Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation. Cryobiology, 2014. 69:482-487. Available from: https://doi.org/10.1016/j.cryobiol.2014.10.009
Silva MA, Peixoto GCX, Lima GL, Bezerra JAB, Campos LB, Paiva ALC, Paula VV, Silva AR. Cryopreservation of collared peccaries (Tayassu tajacu) semen using powdered coconut water (ACO-116c) based extender plus various concentrations of egg yolk and glycerol. Theriogenology, 2012. 78:605–611. Available from: https://doi.org/10.1016/j.theriogenology.2012.03.006
Perumal P, Rajkhowa C. Effect of addition of pomegranate (Punica granatum) juice on the liquid storage (5ºC) of mithun (Bos frontalis) semen. Indian Journal of Animal Research, 2014. 49:470-473. Available from: https://doi.org/10.5958/0976-0555.2015.00091.6
El-Sheshtawy RI, El-Nattat WS, Ali A. Effect of clarified tris egg yolk extender supplemented with strawberry juice (Fragaria spp.) on some characteristics of chilled and frozen cattle semen. International Journal of ChemTech. Research, 2016. 9(6):203-207. Available from: https://www.sphinxsai.com/2016/ch_vol9_no6/1/(203-207)V9N6CT.pdf
El-Sheshtawy RI, El-Sisy GA, El-Nattat WS. Effect of pomegranate juice in Tris-based extender on cattle semen quality after chilling and cryopreservation. Asian Pacific Journal of Reproduction, 2016. 5:335-339. Available from: https://doi.org/10.1016/j.apjr.2016.06.001
Bayemi PH, Banla NR, Leinyuy I, Niba AT, Nsongka VM, Mario G, Shamshuddin M. Use of fruits and raffia palm sap (Raffia hookeri) in chilled bull semen extenders in Cameroon. Agricultural and Biological Science Journal, 2015. 1:142-149. Available from: http://files.aiscience.org/journal/article/html/70040066.html
Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Process., 2011. 89:217-233. Available from: https://doi.org/10.1016/j.fbp.2010.04.008
Djeridane A, Yousfi M, Nadjemi B, Boutassouma D, Stocker P, Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 2006. 97:654-660. Available from: https://doi.org/10.1016/j.foodchem.2005.04.028
Ferguson LR. Role of plant polyphenols in genomic stability. Mutation Research, 2001. 475:89-111. Available from: https://doi.org/10.1016/S0027-5107(01)00073-2
Drummen GPC, Van Liebergen CM, Den Kamp JAF, Post JA. C11-BODIPY581/591, a oxidation-sensitive fluorescent lipid peroxidation probe: (micro) spectroscopic characterization and validation of methodology. Free Radical Biology and Medicine, 2002. 33(4):473-490. Available from: https://doi.org/10.1016/S0891-5849(02)00848-1
Nazarewicz RR, Bikineyeva A, Dikalov SI. Rapid and specific measurements of superoxide using fluorescence spectroscopy. SLAS Discovery, 2013. 18:498-503. Available from: https://doi.org/10.1177/1087057112468765
Kasai T, Ogawa K, Mizuno K, Nagai S, Uchida Y, Ohta S, Fujie M, Suzuki K, Hirata S, Hoshi K. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian Journal of Andrology, 2002. 4:97-103. Available from: http://www.asiaandro.com/archive/1008-682x/4/97.htm?mpclwjsbcesrixsb
Grotter LG, Cattaneo L, MarinI PE, Kjelland ME, Ferré B. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reproduction Domestic Animal, 2019. 54:655-665. Available from: https://doi.org/10.1111/rda.13409
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Animal Science/ Ciência Animal Brasileira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).























