Mixed nonlinear models in ruminal in situ degradability trials
Abstract
Classical methods of analysis of nonlinear models are widely used in studies of ruminal degradation kinetics. As this type of study involves repeated measurements in the same experimental unit, the use of mixed nonlinear models (MNLM) is proposed, in order to solve problems of heterogeneity of variances of the responses, correlation among repeated measurements and consequent lack of sphericity in the covariance matrix. The aims of this work are to present an evaluation of the applicability of MNLM in the estimation of parameters to describe the in situ ruminal degradation kinetics of the dry matter of Tifton 85 hay and to compare the results with those obtained from the usual analysis in two-phases. The steers used in the trial were fed diets composed of three different combinations of roughage and concentrate and two hays with different nutritional qualities. The proposed approach was proven as effective as the traditional one for estimating model parameters. However, it adequately models the correlation among the longitudinal data, which can affect the estimates obtained, the standard error associated with them and potentially change the results of the inferences. It is quite attractive when the research seeks to understand the behavior of the process of food degradation throughout the incubation times.
Keywords: Ruminal degradation kinetics; Longitudinal data; Covariance matrix; Random effects; Dry matter.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).