Dinâmica da imunidade de bezerros holandeses no período neonatal: avaliação do leucograma, expressão gênica de citocinas e linfócitos T

Autores

Resumo

O sistema imunológico dos bezerros neonatos é imaturo e altamente suscetível a doenças, o que representa desafios para sua sobrevivência. Este estudo teve como objetivo avaliar a resposta imune de bezerros nos primeiros 30 dias de vida, com foco no leucograma, na imunofenotipagem dos linfócitos T (CD3+, CD4+ e CD8+) por citometria de fluxo e na expressão gênica das citocinas IL-10 e IL-12 por PCR em tempo real. Os resultados indicaram que o sistema imunológico dos bezerros passa por um processo de adaptação pós-natal, evidenciado por variações nos leucócitos totais e diferenciais, com aumento gradual de linfócitos até o 30º dia e flutuações em granulócitos e monócitos. As menores porcentagens de linfócitos T e a relação CD4+/CD8+ mais baixa ocorreram no terceiro dia de vida, com recuperação gradual. A expressão de IL-10 foi detectada nos dias 1, 3, 10 e 25, enquanto a IL-12 foi observada nos dias 1, 3 e 30. Essas citocinas indicam um equilíbrio dinâmico entre respostas Th1 (pro-inflamatórias) e Th2 (anti-inflamatórias), sugerindo uma regulação imunológica eficiente para controlar inflamações excessivas e combater patógenos. Conclui-se que o sistema imunológico do bezerro passa por uma fase de adaptação e maturação, com modulação da resposta imune observada nas variações nos leucócitos e na expressão das citocinas. 

Downloads

Referências

Brazil. Ministry of Agriculture, Livestock, and Supply. Cattle and buffaloes [Internet]. Available at: https://www.gov.br/agricultura/pt-br/assuntos/sanidade-animal-e-vegetal/saude-animal/programas-de-saude-animal/febre-aftosa/educacao-e-comunicacao-febre-aftosa/material-de-divulgacao/rebanho-nacional-de-bovinos-e-bubalinos

Radostits OM, Gay CC, Blood DC, Hinchcliff KW. Veterinary Medicine. 9th ed. Rio de Janeiro: Guanabara Koogan; 2002. p. 56-59.

Tizard I. Veterinary Immunology. 8th ed. St. Louis: Elsevier; 2008

Mena A, Ioannou XP, Van Kessel A, Van Drunen Little-van den Hurk S, Popowych Y, Babiuk LA, Godson DL. Th1/Th2 biasing effects of vaccination in cattle as determined by real-time PCR. Journal of Immunological Methods [internet]. 2002 [cited 2025 jan 8]; 263(1-2):11-21. Available at: https://doi.org/10.1016/S0022-1759(02)00029-7

Claerebout E, Vercauteren I, Geldhof P, Olbrechts A, Zarlenga DS, Godderis BM. Cytokine response in immunized and non-immunized calves after Ostertagia ostertagi infection. Parasite Immunology [internet]. 2005 [cited 2025 jan 8]; 27(7):325-31. Available at: https://doi.org/10.1111/j.1365-3024.2005.00780.x

Meeusen EN, Balic A, Bowles V. Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Veterinary Immunology and Immunopathology [internet]. 2005[cited 2025 jan 8]; 108(1-2):121-5. Available at: https://doi.org/10.1016/j.vetimm.2005.07.002

Antonis AF, de Jong MC, Van Der Poel WH, Van Der Most RG, Stockhofe-Zurwieden N, Kimman TG, Schrijver RS. Age-dependent differences in the pathogenesis of bovine respiratory syncytial virus infections related to the development of natural immunocompetence. The Journal of General Virology [internet]. 2010 [cited 2025 jan 8]; 91(10): 2497-506. Available at: https://doi.org/10.1099/vir.0.020842-0

Ibelli AMG; Nakata LC; Andréo R; Coutinho LL; Oliveira MCS; Amarante AFT, Furlong J; Zaros LG, Regitano LCA. mRNA profile of Nellore calves after primary infection with Haemonchus placei. Veterinary Parasitology [internet]. 2011 [cited 2025 jan 8]; 176: 195-200. Available at: https://doi.org/10.1016/j.vetpar.2010.11.013

Almería S, Serrano B, Yàñez JL, Darwich L, López-Gatius F. Cytokine gene expression profiles in peripheral blood mononuclear cells from Neospora caninum naturally infected dams throughout gestation. Veterinary Parasitology [internet]. 2012[cited 2025 jan 8]; 183(3-4): 237-243. Available at: https://doi.org/10.1016/j.vetpar.2011.07.038

Bertagnon, HG; Batista CF; Santos KR; Gomes RC; Bellinazzi JB; Della Libera AMMP. Alveolar macrophage functions during the transition phase to active immunity in calves. Journal of animal Science [internet]. 2018[cited 2025 jan 8]; 96: 3738-3747. Available at: https://doi.org/10.1093/jas/sky261

Godden S. Colostrum management for dairy calves. Veterinary Clinics of North America: Food Animal Practice [internet]. 2008 [cited 2025 jan 8]; 24(1): 19-39. Available at: https://doi.org/10.1016/j.cvfa.2007.10.005

Weaver DM, Tyler JW, VanMetre DC, Hostetler DE, Barrington GM. Passive transfer of colostral immunoglobulins in calves. Journal of Veterinary Internal Medicine [internet]. 2000 [cited 2025 jan 8]; 14(6): 569-577. Available at: https://doi.org/10.1111/j.1939-1676.2000.tb02278.x

Soberon F, Raffrenato E, Everett RW, Van Amburgh ME. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. Journal of Dairy Science [internet]. 2012 [cited 2025 jan 8]; 95(2): 783-793. Available at: https://doi.org/10.3168/jds.2011-4391

Mee JF. Newborn dairy calf management. Veterinary Clinics of North America: Food Animal Practice [internet]. 2008[cited 2025 jan 8]; 24(1): 1-17 Available at: https://doi.org/10.1016/j.cvfa.2007.10.002.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research [internet]. 2001[cited 2025 jan 8]; 29(9). Available at: https://doi.org/10.1093/nar/29.9.e45

SAS Institute. SAS user’s guide: statistics. Cary: SAS Institute; 2001. 956 p. (https://support.sas.com/documentation/cdl/en/stat/8.2/HTML/StatIntro.htm)

Marcato F, Brand HD, Kemp B, Reenen KV. Evaluating Potential Biomarkers of Health and Performance in Veal. Frontiers Veterinary. Science[internet]. 2018 [cited 2025 jan 8] 5: 01-18. Available at: https://doi.org/10.3389/fvets.2018.00133

Yang M, Zou Y, Wu ZH, Li SL, Cao ZL. Colostrum quality affects immune system establishment and intestinal development of neonatal calves. Journal of Dairy Science [internet]. 2015[cited 2025 jan 8]; 98(10): 7153-7163. Available at: https://doi.org/10.3168/jds.2014-9238

Miller J, Jones K, Smith S, et al. Immune maturation in neonatal calves: A review of the immune system's development and function. Veterinary Immunology and Immunopathology [internet]. 2020 [cited 2025 jan 8]; 227: 110-118. Available at: https://doi.org/10.1016/j.cvfa.2007.11.001

Benesi FJ, Teixeira C, Leal ML, Lisboa JA, Mirandola R, Shecaira CL, et al. Leukograms of healthy Holstein calves within the first month of life. Pesquisa. Veterinária. Brasileira [internet]. 2012 [cited 2025 jan 8]; 32: 352–356. Available at: https://doi.org/10.1590/S0100-736X2012000400013

Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Fernandez C, Loor JJ. Maternal body condition influences neonatal calf whole-blood innate immune molecular responses to ex vivo lipopolysaccharide challenge. Journal of Dairy Science [internet]. 2021 [cited 2025 jan 8]; 104(2): 2266–2279. Available at: https://doi.org/10.3168/jds.2020-18948

Vlasova AN, Saif LJ. Bovine Immunology: Implications for Dairy Cattle. Frontiers of Immunology[internet].2021 [cited 2025 jan 8]; 29 (12): 643206. Available at: https://doi.org/10.3389/fimmu.2021.643206.

Adkinn B. Development of Neonatal Th1/Th2 Function. International Reviews of Immunology [internet]. 2000 [cited 2025 jan 8]; 19(2-3): 157–171. Available at: https://doi.org/10.3109/08830180009088503

Magombedze G, Eda S, Stabel J. Predicting the role of IL-10 in the regulation of the adaptive immune responses in Mycobacterium avium subsp. paratuberculosis infections using mathematical models. PLoS One [internet].2015 [cited 2025 jan 8]; 30;10(11):e0141539. Available at: https://doi.org/10.1371/journal.pone.0141539

Rojas JM, Avia M, Martín V, Sevilla N. IL-10: A Multifunctional Cytokine in Viral Infections. Journal of Immunology Research [internet]. 2017[cited 2025 jan 8]; 6(10)40-54. Available at: https://doi.org/10.1155/2017/6104054

Ohtsuka H, Kobayashi H, Kinouchi K, Kiyono M, Maeda Y. Comparison of cytokine mRNA expression in peripheral CD4(+), CD8(+) and γδ T cells between healthy Holstein and Japanese Black calves. Animal Science Journal [internet]. 2014 [cited 2025 jan 8]; 85(5):575-580. Available at: https://doi.org/10.1111/asj.12175

Chase CCL, Hurley DJ, Reber AJ. Neonatal immune development in the calf and its impact on vaccine response. Veterinary Clinics of North America: Food Animal Practice [internet]. 2008 [cited 2025 jan 8]; 24(1): 87–104. Available at: https://doi.org/10.1016/j.cvfa.2007.11.001

Laidlaw B, Cui W, Amezquita R. Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells. Nature Immunology [internet]; 2015 [cited 2025 jan 8]; 16: 871–879 Available at: https://doi.org/10.1038/ni.3224

McGill JL, Nonnecke BJ, Lippolis JD, Reinhardt TA, Sacco RE. Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection. Immunology [internet]. 2013 [cited 2025 jan 8]; 139(2): 227-244. Available at: https://doi.org/10.1111/imm.12075

Du Y, Gao Y, Hu M. et al. Colonization and development of the gut microbiome in calves. Journal of Animal Science Biotechnology [internet]. 2023[cited 2025 jan 8]; 14;46. Available at: https://doi.org/10.1186/s40104-023-00856-x

Spickler AR; Roth JA. Adjuvants in Veterinary Vaccines: Modes of Action and Adverse Effects. Journal of Veterinary Internal Medicine, [internet]. 2003 [cited 2025 jan 8]; 17: 273-281. Available at: https://doi.org/10.1111/j.1939-1676.2003.tb02448.x

Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Frontiers Veterinary Science [internet]. 2023[cited 2025 jan 8]; 11; 10:1243835. Available at: https://doi.org/10.3389/fvets.2023.1243835

Publicado

2025-03-21

Como Citar

SHECAIRA, C.; AZEDO, M. R.; SEINO, C. H.; BOMBARDELLI, J. A.; REIS, G. A.; BRANDÃO, P. E.; MIYAGI, S. A. . T.; BENESI, F. J. Dinâmica da imunidade de bezerros holandeses no período neonatal: avaliação do leucograma, expressão gênica de citocinas e linfócitos T. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 26, 2025. Disponível em: https://revistas.ufg.br/vet/article/view/80457. Acesso em: 27 mar. 2025.

Edição

Seção

MEDICINA VETERINÁRIA