Atividade antibiofilme in vitro da água eletroquimicamente ativada contra biofilmes de Salmonella Heidelberg em superfícies de poliestireno
DOI:
https://doi.org/10.1590/1809-6891v25e-78564EResumo
Para garantir a segurança do alimento, abatedouros- frigoríficos de aves seguem protocolos rígidos para evitar a contaminação por bactérias deteriorantes e patogênicas. Entretanto, Salmonella Heidelberg permanece como um problema de saúde pública, uma vez que é capaz de produzir biofilme e sobreviver em superfícies abióticas por longos períodos de tempo. Existe uma necessidade mundial para a identificação de compostos naturais que sejam capazes de remover e de prevenir a formação de biofilmes em superfícies de contato com alimentos. A água eletroquimicamente ativada (ECAW) é uma alternativa potencial aos desinfetantes químicos utilizados contra patógenos de alimentos. A atividade antibiofilme da ECAW já foi demonstrada em aço inoxidável e no polietileno, mas não em superfícies de poliestireno. O objetivo deste estudo foi avaliar a atividade antibiofilme de ECAW contra os biofilmes de S. Heidelberg em superfícies de poliestireno e comparar com um desinfetante de amplo espectro, um detergente alcalino e um detergente ácido. Todos os produtos foram testados em três concentrações para determinar a atividade antibiofilme de ECAW contra os biofilmes de S. Heidelberg em superfícies de poliestireno a 25°C e a 37°C. Todos os experimentos foram realizados em triplicatas. A ECAW foi efetiva em 56% na capacidade de remoção dos biofilmes de S. Heidelberg formados em superfícies de poliestireno, sendo observada influência do tempo de contato, concentração do produto e temperatura. Em relação à prevenção da formação dos biofilmes, ECAW foi efetiva em 54% e apresentou resultados similares ou superiores ao desinfetante e aos detergentes avaliados. Os resultados encontrados in vitro demonstram que ECAW é efetiva na remoção e na prevenção de biofilmes de S. Heidelberg em superfícies de poliestireno. Ademais, confirmam o seu potencial para ser utilizada como uma alternativa na cadeia de produção de alimentos.
Downloads
Referências
World Health Organization (WHO). Food Safety. [cited 2023 Jan 07]. Available from: https://www.who.int/news-room/fact-sheets/detail/food-safety
» https://www.who.int/news-room/fact-sheets/detail/food-safety
European Food Safety Authority (EFSA). Salmonella the most common cause of foodborne outbreaks in the European Union. [cited 2022 Nov 15]. Available from: http://www.efsa.europa.eu/en/news/salmonella-mostcommon-cause-foodborne-outbreaks-european-union
» http://www.efsa.europa.eu/en/news/salmonella-mostcommon-cause-foodborne-outbreaks-european-union
Centers for Diseases Control and Prevention (CDC). Salmonella [cited 2022 Feb 07]. Available from: https://www.cdc.gov/salmonella/index.html Accessed 07 February 2022.
» https://www.cdc.gov/salmonella/index.html
Carvalho D, Chitolina GZ, Wilsmann DE, Lucca V, Dias de Emery B, Borges KA, Furian TQ, Salle CTP, Moraes HLS, do Nascimento VP. Adhesion capacity of Salmonella Enteritidis, Escherichia coli, and Campylobacter jejuni on polystyrene, stainless steel, and polyethylene surfaces. Food Microbiology. 2023;114:104280. http://doi.org/10.1016/j.fm.2023.104280
» https://doi.org/10.1016/j.fm.2023.104280
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology. 2016;14:563–575. https://doi.org/10.1038/nrmicro.2016.94
» https://doi.org/10.1038/nrmicro.2016.94
Gieraltowski L, Higa J, Peralta V, Green A, Schwensohn C, Rosen H, Libby T, Kissler B, Marsden-Haug N, Booth H, Kimura A, Grass J, Bicknese A, Tolar B, Defibaugh-Chávez S, Williams I, Wise M. National outbreak of multidrug resistant Salmonella Heidelberg infections linked to a single poultry company. PLoS One 2016;11:e0162369 https://doi.org/10.1371/journal.pone.0162369
» https://doi.org/10.1371/journal.pone.0162369
Voss-Rech D, Kramer B, Silva VS, Rebelatto R, Abreu PG, Coldebella A, Vaz CSL. Longitudinal study reveals persistent environmental Salmonella Heidelberg in Brazilian broiler farms. Veterinary Microbiology. 2019;233:118-123 http://doi.org/10.1016/j.vetmic.2019.04.004
» https://doi.org/10.1016/j.vetmic.2019.04.004
Carvalho D, Menezes R, Chitolina GZ, Kunert-Filho HC, Wilsmann DE, Borges KA, Furian TQ, Salle CTP, Moraes HLS, Nascimento VP. Antibiofilm activity of the biosurfactant and organic acids against foodborne pathogens at different temperatures, times of contact, and concentrations. Brazilian Journal of Microbiology. 2022;53:1051-1064 https://doi.org/10.1007/s42770-022-00714-4
» https://doi.org/10.1007/s42770-022-00714-4
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, Dorey S. Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Frontiers in Bioengineering and Biotechnology. 2020;8:1-11 https://doi.org/10.3389/fbioe.2020.01014
» https://doi.org/10.3389/fbioe.2020.01014
Wessels K, Rip D, Gouws P. Salmonella in chicken meat: consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods. 2021;10:1742 https://doi.org/10.3390%2Ffoods10081742
» https://doi.org/10.3390%2Ffoods10081742
Block MS, Rowan BG. Hypochlorous Acid: A Review. Journal of Oral Maxillofacial Surgery. 2020 ;78(9):1461-1466. https://doi.org/10.1016%2Fj.joms.2020.06.029
» https://doi.org/10.1016%2Fj.joms.2020.06.029
Nature’s own powerful, non-toxic disinfectant. British Dental Journal. 2018;224,553. https://doi.org/10.1038/sj.bdj.2018.302
» https://doi.org/10.1038/sj.bdj.2018.302
Al-Holy MA, Rasco BA. The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken, and beef surfaces. Food Control. 2015;54:317–321 https://doi.org/10.1016/j.foodcont.2015.02.017
» https://doi.org/10.1016/j.foodcont.2015.02.017
Luo K, Oh D. Inactivation kinetics of Listeria monocytogenes and Salmonella enterica serovar Typhimurium on fresh-cut bell pepper treated with slightly acidic electrolyzed water combined with ultrasound and mild heat. Food Microbiology. 2016;53:165–171 https://doi.org/10.1016/j.fm.2015.09.014
» https://doi.org/10.1016/j.fm.2015.09.014
Wilsmann DE, Carvalho D, Chitolina GZ, Borges KA, Furian TQ, Martins AC, Webber B, Nascimento VP. Electrochemically-activated water presents bactericidal effect against Salmonella Heidelberg isolated from poultry origin. Foodborne Pathogens and Disease. 2020;17:228-233 https://doi.org/10.1089/fpd.2019.2682
» https://doi.org/10.1089/fpd.2019.2682
Zang YT, Li BM, Bing S, Cao W. Modeling disinfection of plastic poultry transport cages inoculated with Salmonella Enteritidis by slightly acidic electrolyzed water using response surface methodology. Poult Science. 2018;94:2059–2065 https://doi.org/10.3382/ps/pev188
» https://doi.org/10.3382/ps/pev188
Wilsmann DE, Furian TQ, Carvalho D, Chitolina GZ, Lucca V, Emery BD, Borges KA, Martins AC, Pontin KP, Salle CTP, de Souza Moraes HL, do Nascimento VP. Antibiofilm activity of electrochemically activated water (ECAW) in the control of Salmonella Heidelberg biofilms on industrial surfaces. Brazilian Journal of Microbiology. 2023;54(3):2035-2045 http://doi.org/10.1007/s42770-023-01005-2
» https://doi.org/10.1007/s42770-023-01005-2
Vallejos S, Trigo-López M, Arnaiz A, Miguel Á, Muñoz A, Mendía A, García JM. From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers (Basel). 2022;14(22):4954. http://doi.org/10.3390/polym14224954
» https://doi.org/10.3390/polym14224954
Pitts B, Hamilton MA, Zelver N, Stewart PS. A microtiter-plate screening method for biofilm disinfection and removal. Journal of Microbiological Methods. 2003;54:269–276. https://doi.org/10.1016/s0167-7012(03)00034-4
» https://doi.org/10.1016/s0167-7012(03)00034-4
Potera C. Antibiotic resistance: biofilm dispersing agent rejuvenates older antibiotics. Environmental Health Perspectives. 2010;118:A288 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920928/
» https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920928/
Food and Agriculture Organization (FAO). Slaughterhouse cleaning and sanitation. [cited 2022 Jun 07]. Available from: https://www.fao.org/3/x6557e/X6557E00.htm#TOC
» https://www.fao.org/3/x6557e/X6557E00.htm#TOC
Chindera K, Mahato M, Sharma AK, Horsley H, Kloc-Muniak K, Kamaruzzaman NF, Kumar S, McFarlane A, Stach J, Bentin T, Good L. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Science Reports. 2016;6:23121 https://doi.org/10.1038/srep23121
» https://doi.org/10.1038/srep23121
Andrade NJ. Higiene na indústria de alimentos: avaliação e controle de adesão e formação de biofilmes bacterianos. São Paulo: Varela; 2008. 412 p. (Portuguese)
Eazychem. The benefits of using an alkaline detergent. [cited 2022 May 09]. Available from: https://www.eazychem.co.uk/benefits-using-alkaline-detergent
» https://www.eazychem.co.uk/benefits-using-alkaline-detergent
Emery BD, Chitolina GZ, Qadir MI, Furian TQ, Borges KA, Moraes HLS, Salle CTP, Nascimento VP. Antimicrobial and antibiofilm activity of silver nanoparticles against Salmonella Enteritidis. Brazilian Journal of Microbiology. 2023;54:285–292 https://doi.org/10.1007/s42770-022-00868-1
» https://doi.org/10.1007/s42770-022-00868-1
Borges A, Saavedra MJ, Simões M. The activity of ferulic and gallic acids in bioflm prevention and control of pathogenic bacteria. Biofouling. 2012;28:755–767 https://doi.org/10.1080/08927014.2012.706751
» https://doi.org/10.1080/08927014.2012.706751
Borges KA, Furian TQ, Souza SN, Menezes R, Tondo EC, Salle CTP, Moraes HLS, Nascimento VP. Biofilm formation capacity of Salmonella serotypes at different temperature conditions. Pesquisa Veterinária Brasileira. 2018;38:71–76 https://doi.org/10.1590/1678-5150-PVB-4928
» https://doi.org/10.1590/1678-5150-PVB-4928
Kim W, Kim S, Kang D. Thermal and non-thermal treatment effects on Staphylococcus aureus biofilms formed at different temperatures and maturation periods. Food Research International. 2020;137:109432 https://doi.org/10.1016/j.foodres.2020.109432
» https://doi.org/10.1016/j.foodres.2020.109432
Gemba M, Rosiak E, Nowak-Życzyńska Z, Kałęcka P, Łodykowska E, Kołożyn-Krajewska D. Factors influencing biofilm formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. isolated from human milk determined by PCA analysis. Foods. 2022;11:3862. https://doi.org/10.3390/foods11233862
» https://doi.org/10.3390/foods11233862
Yuan L, Sadiq FA, Wang N, Yang Z, He G. Recent advances in understanding the control of disinfectant-resistant bioflms by hurdle technology in the food industry. Critical Reviews in Food Science and Nutrition. 2021;61:3876-3891. https://doi.org/10.1080/10408398.2020.1809345
» https://doi.org/10.1080/10408398.2020.1809345
Danyluk MD, Friedrich LM, Dunn LL, Zhang J, Ritenour MA. Reduction of Escherichia coli, as a surrogate for Salmonella spp., on the surface of grapefruit during various packingline processes. Journal of Food Microbiology. 2019;78:188–193. https://doi.org/10.1016/j.fm.2018.10.014
» https://doi.org/10.1016/j.fm.2018.10.014
Elexson N, Afsah-Hejri L, Rukayadi Y, Soopna P, Lee HY, Zainazor TCT, Ainy MN, Nakaguchi Y, Mitsuaki N, Son R. Effect of detergents as antibacterial agents on biofilm of antibiotics-resistant Vibrio parahaemolyticus isolates. Food Control. 2014;35:378–385 https://doi.org/10.1016/j.foodcont.2013.07.020
» https://doi.org/10.1016/j.foodcont.2013.07.020
Gosling RJ, Mawhinney I, Vaughan K, Davies RH, Smith RP. Efficacy of disinfectants and detergents intended for a pig farm environment where Salmonella is present. Veterinary Microbiology 2017;204:46–53 https://doi.org/10.1016/j.vetmic.2017.04.004
» https://doi.org/10.1016/j.vetmic.2017.04.004
Hertwig AM, Prestes FS, Nascimento MS. Biofilm formation and resistance to sanitizers by Salmonella spp. Isolated from the peanut supply chain. Food Research International. 2022;152:110882 https://doi.org/10.1016/j.foodres.2021.110882
» https://doi.org/10.1016/j.foodres.2021.110882
Luciano CC, Olson N, Tipple AF, Alfa M. Evaluation of the ability of different detergents and disinfectants to remove and kill organisms in traditional biofilm. American Journal of Infection Control 2016;44:e243–e249 https://doi.org/10.1016/j.ajic.2016.03.040
» https://doi.org/10.1016/j.ajic.2016.03.040
Peng D. Biofilm formation of Salmonella In: Dhanasekaran D. & Thajuddin N. (Eds.), Microbial biofilms: importance and applications. IntechOpen, online. 2016. [cited 2023 Dec 04]. Available from: https://www.intechopen.com/chapters/50456
» https://www.intechopen.com/chapters/50456
Sun JL, Zhang SK, Chen JY, Han BZ. Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Canadian Journal of Microbiology. 2012;58:448–454. https://doi.org/10.1139/w2012-005
» https://doi.org/10.1139/w2012-005
Ignatov I, Gluhchev G, Karadzhov S, Miloshev G, Ivanov N, Mosin O. Preparation of electrochemically activated water solutions (catholyte/anolyte) and studying their physical-chemical properties. Journal of Medicine, Physiology and Biophysics. 2015;13:64-78. oai:ojs.localhost:article/22411
Okanda T, Takahashi R, Ehara T, Ohkusu K, Furuya N, Matsumoto T. Slightly acidic electrolyzed water disrupts biofilms and effectively disinfects Pseudomonas aeruginosa Journal of Infection and Chemotherapy. 2019;25:452–457 https://doi.org/10.1016/j.jiac.2019.01.014
» https://doi.org/10.1016/j.jiac.2019.01.014
Liao LB, Chen WM, Xiao XM. The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. Journal of Food Engineering 2007;78:1326–1332 https://doi.org/10.1016/j.jfoodeng.2006.01.004
» https://doi.org/10.1016/j.jfoodeng.2006.01.004
Thorn RM, Lee SW, Robinson GM, Greenman J, Reynolds DM. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. European Journal of Clinical Microbiology & Infectious Diseases. 2012;31:641–653 https://doi.org/10.1007/s10096-011-1369-9
» https://doi.org/10.1007/s10096-011-1369-9
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology. 2016;14:563–575 https://doi.org/10.1038/nrmicro.2016.94
» https://doi.org/10.1038/nrmicro.2016.94
Craveiro S, Alves-Barroco C, Crespo MTB, Barreto AS, Semedo-Lemsaddek T. Aeromonas biofilm on stainless steel: efficiency of commonly used disinfectants. International Journal of Food Science & Technology. 2015;50:851–856 https://doi.org/10.1111/ijfs.12731
» https://doi.org/10.1111/ijfs.12731
Duong H, Nguyen N, Yuk H. Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control. 2013;29:236–240 https://doi.org/10.1016/j.foodcont.2012.06.006
» https://doi.org/10.1016/j.foodcont.2012.06.006
Wales A, Breslin M, Davies R. Assessment of cleaning and disinfection in Salmonella-contaminated poultry layer houses using qualitative and semi-quantitative culture techniques. Veterinary Microbiology. 2006;116:283–293 https://doi.org/10.1016/j.vetmic.2006.04.026
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência Animal Brasileira / Brazilian Animal Science

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).