Alterações hemogasométricas e bioquímicas causadas por dietas com alto balanço cátion-aniônico negativo em vacas leiteiras

Autores

DOI:

https://doi.org/10.1590/1809-6891v22e-67426

Resumo

O objetivo deste estudo foi avaliar indicadores hemogasométricos e metabólicos nas primeiras horas pós-parto de vacas leiteiras, que receberam diferentes dietas cátion-aniônica no pré-parto. Vacas da raça Holandesa Preta e Branca (HPB) (n=14), multíparas, foram divididas em dois grupos: dieta acidogênica (DA -27,13 mEq/100g de MS) (n=7) e dieta neutra (DN -3,25 mEq/100g de MS) (n=7), fornecidas a partir de 30 dias antes da previsão do parto. Amostras de urina foram coletadas a cada três dias após o início da suplementação até o dia do parto, para a verificação do pH. Amostras de sangue foram coletadas às 0, 6, 12, 24, 36, 48, 60 e 72 horas pós-parto, para análises hemogasométricas e bioquímicas. Os animais que receberam DA apresentaram pH urinário menor. A concentração sérica de cálcio total, cálcio ionizado e a incidência de hipocalcemia subclínica não diferiram entre os grupos. Animais que receberam DA apresentaram redução nos níveis sanguíneos de proteínas plasmáticas totais, globulinas, bicarbonato e pH sanguíneo, além de aumento na atividade de paraoxonase-1 (PON-1) e redução na concentração de haptoglobina em relação aos animais da DN. Como conclusão podemos inferir que, dietas acidogênicas podem alterar o pH sanguíneo, interferir na síntese de proteínas, e provavelmente melhorar a capacidade antioxidante.
Palavras-Chave: ácido-base, hipocalcemia subclínica, hemogasometria, vacas leiteiras.

Downloads

Não há dados estatísticos.

Referências

Santos JEP, Lean IJ, Golder H, Block E. Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows. Journal of dairy science. 2019;102(3):2134-54.

Hu W, Murphy MR. Dietary cation-anion difference effects on performance and acid-base status of lactating dairy cows: A meta-analysis. Journal of dairy research. 2004;87(7):2222-9.

Oetzel GR. Effect of calcium chloride gel treatment in dairy cows on incidence of periparturient diseases. J Am Vet Med Assoc. 1996;209(5):958-61.

Goff JP. The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. The Veterinary Journal. 2008;176(1):50-7.

Martinez N, Sinedino L, Bisinotto R, Ribeiro E, Gomes G, Lima F, et al. Effect of induced subclinical hypocalcemia on physiological responses and neutrophil function in dairy cows. Journal of dairy science. 2014;97(2):874-87.

Goff JP. Calcium and magnesium disorders. The veterinary clinics of North America: food animal practice. 2014;30(2):359-81, vi.

Eklund M. The dietary cation-anion difference and its impact on the milk production in dairy cows. 2016.

Roche JR, Dalley DE, O'Mara FP. Effect of a metabolically created systemic acidosis on calcium homeostasis and the diurnal variation in urine pH in the non-lactating pregnant dairy cow. Journal of dairy research. 2007;74(1):34-9.

Campion KL, McCormick WD, Warwicker J, Khayat ME, Atkinson-Dell R, Steward MC, et al. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism. Journal of the American Society of Nephrology. 2015;26(9):2163-71.

Chan PS, West JW, Bernard JK. Effect of prepartum dietary calcium on intake and serum and urinary mineral concentrations of cows. Journal of dairy science. 2006;89(2):704-13.

Pizoni C, Feijó JO, Londero US, Pereira RA, Corrêa MN, Brauner CC, et al. Parâmetros clínicos, hematológicos e bioquímicos de novilhas com hipocalcemia subclínica pré-parto suplementadas com dieta aniônica. Arquivo brasileiro de medicina veterinária e zootecnia. 2017;69(5):1130-8.

Oetzel GR. Meta-analysis of nutritional risk factors for milk fever in dairy cattle. Journal of dairy science. 1991;74(11):3900-12.

DeGaris PJ, Lean IJ. Milk fever in dairy cows: A review of pathophysiology and control principles. The veterinary journal. 2008;176(1):58-69.

Fox DG, Tylutki TP. Accounting for the effects of environment on the nutrient requirements of dairy cattle. Journal of dairy research. 1998;81(11):3085-95.

DeGaris PJ, Lean IJ, Rabiee AR, Heuer C. Effects of increasing days of exposure to prepartum transition diets on reproduction and health in dairy cows. Aust Vet J. 2010;88(3):84-92.

Caixeta LS, Ospina PA, Capel MB, Nydam DV. Association between subclinical hypocalcemia in the first 3 days of lactation and reproductive performance of dairy cows. Theriogenology. 2017;94:1-7.

Horst RL, Goff JP, Reinhardt TA. Adapting to the transition between gestation and lactation: differences between rat, human and dairy cow. Journal of mammary gland biology and neoplasia. 2005;10(2):141-56.

Martinez N, Risco CA, Lima FS, Bisinotto RS, Greco LF, Ribeiro ES, et al. Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease. Journal of dairy science. 2012;95(12):7158-72.

LeBlanc SJ. Relationships between metabolism and neutrophil function in dairy cows in the peripartum period. Animal : an international journal of animal bioscience. 2020;14(S1):s44-s54.

Brozos C, Mavrogianni VS, Fthenakis GC. Treatment and control of peri-parturient metabolic diseases: pregnancy toxemia, hypocalcemia, hypomagnesemia. The veterinary clinics of North America: food animal practice. 2011;27(1):105-13.

Lean IJ, Santos JEP, Block E, Golder HM. Effects of prepartum dietary cation-anion difference intake on production and health of dairy cows: A meta-analysis. Journal of dairy science. 2019;102(3):2103-33.

Clemens RA, Lowell CA. Store‐operated calcium signaling in neutrophils. Journal of leukocyte biology. 2015;98(4):497-502.

Reinhardt TA, Lippolis JD, McCluskey BJ, Goff JP, Horst RL. Prevalence of subclinical hypocalcemia in dairy herds. The Veterinary Journal. 2011;188(1):122-4.

Silva DC, Fernandes BD, Santos Lima JM, Rodrigues GP, Dias DLB, Oliveira Souza EJ, et al. Prevalence of subclinical hypocalcemia in dairy cows in the Sousa city micro-region, Paraíba state. Tropical animal health and production. 2019;51(1):221-7.

McArt J, Neves R. Association of transient, persistent, or delayed subclinical hypocalcemia with early lactation disease, removal, and milk yield in Holstein cows. Journal of dairy science. 2020;103(1):690-701.

Canales A, Sánchez-Muniz FJ. Paraoxonasa,¿ algo más que una enzima? Medicina Clínica. 2003;121(14):537-48.

Ferré N, Camps J, Prats E, Vilella E, Paul A, Figuera L, et al. Serum paraoxonase activity: a new additional test for the improved evaluation of chronic liver damage. Clinical chemistry. 2002;48(2):261-8.

Jelena A, Mirjana M, Desanka B, Svetlana I-M, Aleksandra U, Goran P, et al. Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: antioxidant role of haptoglobin. Journal of physiology and biochemistry. 2013;69(1):45-58.

Eckersall PD, Young FJ, McComb C, Hogarth CJ, Safi S, Weber A, et al. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. The Veterinary record. 2001;148(2):35-41.

Tseng CF, Lin CC, Huang HY, Liu HC, Mao SJT. Antioxidant role of human haptoglobin. Proteomics. 2004;4(8):2221-8.

Hady PJ, Domecq JJ, Kaneene JB. Frequency and precision of body condition scoring in dairy cattle. Journal of dairy science. 1994;77(6):1543-7.

Jones GE, Mould DL. Adaptation of the guaiacol (peroxidase) test for haptoglobins to a microtitration plate system. Research in veterinary science. 1984;37(1):87.

Schneider A, Corrêa MN, Butler WR. Short communication: acute phase proteins in Holstein cows diagnosed with uterine infection. Research in veterinary science. 2013;95(1):269-71.

Browne RW, Koury ST, Marion S, Wilding G, Muti P, Trevisan M. Accuracy and biological variation of human serum paraoxonase 1 activity and polymorphism (Q192R) by kinetic enzyme assay. Clin Chem. 2007;53(2):310-7.

Seely C, Leno B, Kerwin A, Overton T, McArt J. Association of subclinical hypocalcemia dynamics with dry matter intake, milk yield, and blood minerals during the periparturient period. Journal of Dairy Science. 2021;104(4):4692-702.

González F, Corrêa M, Silva S. Transtornos metabólicos nos animais domésticos. Félix H Díaz Gonzalez, Marcío Nunes Corrêa (e) Sérgio Ceroni da Silva–2 Ed–Porto Alegre: UFRGS. 2014:344.

Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ, Berry DP. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of dairy science. 2009;92(12):5769-801.

Hernández-Castellano LE, Hernandez LL, Weaver S, Bruckmaier RM. Increased serum serotonin improves parturient calcium homeostasis in dairy cows. Journal of dairy science. 2017;100(2):1580-7.

Moore SJ, VandeHaar MJ, Sharma BK, Pilbeam TE, Beede DK, Bucholtz HF, et al. Effects of altering dietary cation-anion difference on calcium and energy metabolism in peripartum cows. Journal of dairy research. 2000;83(9):2095-104.

van Knegsel ATM, Van den Brand H, Dijkstra J, Tamminga S, Kemp B. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reproduction nutrition development. 2005;45(6):665-88.

Goff JP. Pathophysiology of calcium and phosphorus disorders. The veterinary clinics of North America: food animal practice. 2000;16(2):319-37.

Schreiber R. Ca 2+ signaling, intracellular pH and cell volume in cell proliferation. The Journal of membrane biology. 2005;205(3):129.

Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. Journal of the American society of nephrology. 2006;17(7):1807-19.

Jackson JA, Hemken RW. Calcium and Cation-Anion Balance Effects on Feed Intake, Body Weight Gain, and Humoral Response of Dairy Calves. Journal of dairy science. 1994;77(5):1430-6.

Russell KE, Roussel AJ. Evaluation of the ruminant serum chemistry profile. Vet Clin North Am Food Anim Pract. 2007;23(3):403-26.

Sordillo LM, Aitken SL. Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary immunology and immunopathology. 2009;128(1-3):104-9.

Eaton D, Pooler J. Fisiologia renal de Vander. Porto Alegre - RS - Brasil: Artmed Editora; 2015.

Carafoli E, Santella L, Branca D, Brini M. Generation, control, and processing of cellular calcium signals. Critical reviews in biochemistry and molecular biology. 2001;36(2):107-260.

Publicado

2021-07-23

Como Citar

FEIJÓ, J. de O.; LONDERO, U. S.; PIZONI, C.; ALVARADO-RINCÓN, J. A.; BARBOSA, A. A.; SCHMITT, E.; PEREIRA, R. A.; PINO, F. A. B. D.; CORRÊA, M. N. Alterações hemogasométricas e bioquímicas causadas por dietas com alto balanço cátion-aniônico negativo em vacas leiteiras. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 22, 2021. DOI: 10.1590/1809-6891v22e-67426. Disponível em: https://revistas.ufg.br/vet/article/view/67426. Acesso em: 22 dez. 2024.

Edição

Seção

MEDICINA VETERINÁRIA