Damage to deoxyribonucleic acid - DNA and its influence on ethanol production in industrial lines of Saccharomyces cerevisiae in relation to fermentative cycles
DOI:
https://doi.org/10.5216/rbn.v19i2.74455Keywords:
Deoxyribonucleic acid, metabolites, Saccharomyces cerevisiaeAbstract
In industrial processes, more robust and tolerant Saccharomyces cerevisiae strains are needed, as stress conditions can affect these microorganisms and cause cellular changes. Thus, this study aimed to evaluate the genetic and physiological effect of fermentation cycles in industrial strains of S. cerevisiae. A pre-inoculum was performed by inoculating 0.10 g of Pedra-2, FT858 and Fleischmann yeasts in YPD 2% liquid medium and incubated at 30°C for 10 hours at 250 rpm. The cells were recovered and the biomass obtained was inoculated in sugarcane juice with 22°Brix at a temperature of 30°C at 250 rpm for 10 hours being conducted with cell recycling. Aliquots were taken at each cycle for genotoxicity analysis by the comet test and physiological stress by ethanol quantification. THE yeast Fleischmann showed lower tolerance to the fermentation cycle, showing greater damage to deoxyribonucleic acid (DNA). The ethanol productivity of the Fleischman strain, in the first fermentation cycle, was similar to the Pedra-2 and FT858 yeasts. However, during the cycles, there was a reduction in the content of this metabolite.
Downloads
References
Auesukaree, C. 2017. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J. Biosci. Bioeng. 124(2): 133-142. DOI: https://doi.org/10.1016/j.jbiosc.2017.03.009
Bassi, A. P. G., L. Meneguello, A. L. Paraluppi, B. Sanches C. P. & S. R. Ceccato-Antonini. 2018. Interaction of Saccharomyces cerevisiae–Lactobacillus fermentum–Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie Leeuwenhoek. 111(9): 1661-1672. DOI: https://doi.org/10.1007/s10482-018-1056-2
Batistote, M., C. A. L. Cardoso, D. D. Ramos & J. R. Ernandes. 2010. Desempenho de leveduras obtidas em indústria de Mato Grosso do Sul na produção de etanol em mosto a base de cana de açúcar. Ciênc. Nat. 32(2): 83-95.
Batistote, M. & M. D. S. M. Santos. 2020. Analysis of fermentative parameters and the importance of Saccharomyces cerevisiae in the development of goods and services. Res. Soc. Dev. 9(11): e93691110586. DOI: https://doi.org/10.33448/rsd-v9i11.10586
Cristobal-Sarramian, A. & D. Atzmüller. 2018. Yeast as a production platform in biorefineries: conversion of agricultural residues into value-added products. Agron. Res. 16(2): 377-388. DOI: http://dx.doi.org/10.15159/ar.18.066
Da Silva, J. 2007. O usa do ensaio cometa para o ensino de genética toxicológica. Genética na escola, 2: 30-37.
Deparis, Q., A. Claes, M. R. Foulquié-Moreno & J. M. Thevelein. 2017. Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res. 17(4): 1-17. DOI: https://doi.org/10.1093/femsyr/fox036
Dzialo, M. C., R. Park, J. Steensels, B. Lievens & K. J. Verstrepen. 2017. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 41(S1): S95-S128. DOI: https://doi.org/10.1093/femsre/fux031
Eardley, J. & D. J. Timson. 2020. Yeast cellular stress: impacts on bioethanol production. Ferment. 6(4): 1-19. DOI: https://doi.org/10.3390/fermentation6040109
Favaro, L., T. Jansen & W. H. Van Zyl. 2019. Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Crit. Rev. Biotechnol. 39(6): 800-816. DOI: https://doi.org/10.1080/07388551.2019.1619157
Garcia, T. C., A. Durand-Morat, W. Yang, M. Popp & W. Schreckhise. 2022. Consumers’ willingness to pay for second-generation ethanol in Brazil. Energy Policy. 161: 112729. DOI: https://doi.org/10.1016/j.enpol.2021.112729
Geng, P., L. Zhang & G. Y. Shi. 2017. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 33(5): 1-8. DOI: https://doi.org/10.1007/s11274-017-2259-9
Gong, Z., J. Nielsen & Y. J. Zhou. 2017. Engineering robustness of microbial cell factories. Biotechnology J. 12(10): 1700014. DOI: https://doi.org/10.1002/biot.201700014
Jach, M. E., A. Serefko, M. Ziaja & M. Kieliszek. 2022. Yeast Protein as an Easily Accessible Food Source. Metabolites. 12(1): 63. DOI: https://doi.org/10.3390/metabo12010063
Lah, B., G. Gorjanc, F. V. Nekrep & R. Marinsek-Logar. 2004. Comet assay assessment of wastewater genotoxicity using yeast cells. Bull. Environ. Contam. Toxicol. 72(3): 607-616. DOI: https://doi.org/10.1007/s00128-004-0287-2
Lin, N. X., Y. Xu & X. W. Yu. 2021. Overview of yeast environmental stress response pathways and the development of tolerant yeasts. SMAB. 2: 232–245. DOI: https://doi.org/10.1007/s43393-021-00058-4
Liu, Y., P. Cruz-Morales, A. Zargar, M. S. Belcher, B. Pang, E. Englund, D. Qingyun, Y. Kevin & J. D. Keasling. 2021. Biofuels for a sustainable future. Cell. 184(6): 1636-1647. DOI: https://doi.org/10.1016/j.cell.2021.01.052
Lopes, M. L., S. C. D. L. Paulillo, A. Godoy, R. A. Cherubin, M. S. Lorenzi, F. H. C. Giometti, C. D. Bernardino, H. B. Amorim Neto & H. V. D. Amorim. 2016. Ethanol production in Brazil: a bridge between science and industry. Braz. J. Microbiol. 47: 64-76. DOI: https://doi.org/10.1016/j.bjm.2016.10.003
Manochio, C., B. R. Andrade, R. P. Rodriguez & B. S. Moraes. 2017. Ethanol from biomass: A comparative overview. Renew. Sust. Energ. Rev. 80: 743-755. DOI: https://doi.org/10.1016/j.rser.2017.05.063
Marsit, S., J. B. Leducq, E. Durand, A. Marchant, M. Filteau & C. R. Landry. 2017. Evolutionary biology through the lens of budding yeast comparative genomics. Nat. Rev. Genet. 18(10): 581-598. DOI: https://doi.org/10.1038/nrg.2017.49
Martínez-Matías, N., N. Chorna, S. González-Crespo, L. Villanueva, I. Montes-Rodríguez, L. M. Melendez-Aponte, A. Roche-Lima, K. Carrasquillo-Carrión, E. Santiago-Cartagena, B. C Rymond, M. Babu, I. Stagljar & J. R. Rodríguez-Medina. 2021. Toward the discovery of biological functions associated with the mechanosensor Mtl1p of Saccharomyces cerevisiae via integrative multi-OMICs analysis. Sci. Rep. 11(1): 1-18. DOI: https://doi.org/10.1038/s41598-021-86671-8
Mavrommati, M., A. Daskalaki, S. Papanikolaou & G. Aggelis. 2021. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol. Adv. 54: 107795. DOI: https://doi.org/10.1016/j.biotechadv.2021.107795
Moscoviz, R., E. Trably, N. Bernet & H. Carrère. 2018. The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation. Green Chem. 20(14): 3159-3179. DOI: https://doi.org/10.1039/c8gc00572a
Mueller, L. P., D. T. Sarabia, C. A. L. Cardoso & M. Batistote. 2019. O potencial associado das fontes renováveis e Saccharomyces cerevisiae para produção de bioetanol. Educação Ambiental em Ação. 18(68). Available in: <http://www.revistaea.org/artigo.php?idartigo=3660>. Accessed on Aug. 10, 2022.
Mueller, L. P., M. D. S. M. Santos, C. A. L. Cardoso & M. Batistote. 2020. The effects of thermal and ethanolic stress in industrial strains of Saccharomyces cerevisiae. Res. Soc. Dev. 9(10): e6819109091-e6819109091. DOI: https://doi.org/10.33448/rsd-v9i10.9091
Nagamatsu, S. T., N. Coutouné, J. José, M. B. Fiamenghi, G. A. G. Pereira, J. V. D. C. Oliveira & M. F. Carazzolle. 2021. Ethanol production process driving changes on industrial strains. FEMS Yeast Res. 21(1): foaa071. DOI: https://doi.org/10.1093/femsyr/foaa071
Navarrete, C., I. H. Jacobsen, J. L. Martínez & A. Procentese. 2020. Cell Factories for Industrial Production Processes: Current Issues and Emerging Solutions. Process. 8(7): 768. DOI: https://doi.org/10.3390/pr8070768
Oh, E. J. & Y. S. Jin. 2020. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res. 20(1): foz089. DOI: https://doi.org/10.1093/femsyr/foz089
Olsson, L., P., Rugbjerg, L. T. Pianale & C. Trivellin. 2022. Robustness: linking strain design to viable bioprocesses. Trends in Biotech. DOI: https://doi.org/10.1016/j.tibtech.2022.01.004
Peetermans, A., M. R. Foulquié-Moreno & J. M. Thevelein. 2021. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microb Cell. 8(6): 111-130. DOI: https://doi.org/10.15698/mic2021.06.751
Saini, P., A. Beniwal, A. Kokkiligadda & S. Vij. 2018. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem. 72: 1-12. DOI: https://doi.org/10.1016/j.procbio.2018.07.001
Santos, M. D. S. M., C. A. L. Cardoso, E. M. Silva & M. Batistote. 2018. Potential of saccharine substrates for ethanol production. Orbital: Electron. J. Chem. 10(1): 14-21. DOI: http://dx.doi.org/10.17807/orbital.v10i1.1013
Santos, M. do S. M., M. Batistote & C. A. L Cardoso. 2021. The Production of Metabolites by Saccharomyces cerevisiae and its Application in Biotechnological Processes. Front., J. Soc. Technol. Environ. Sci. 10(3): 174-184. DOI: https://doi.org/https://doi.org/10.21664/2238-8869.2021v10i3.p174-184
Sanz, A. B., R. García, J. M. Rodríguez-Peña & J. Arroyo. 2018. The CWI pathway: regulation of the transcriptional adaptive response to cell wall stress in yeast. J. Fungi (Basel). 4(1): 1. DOI: https://doi.org/10.3390/jof4010001
Šoštarić, N., A. Arslan, B. Carvalho, M. Plech, K. Voordeckers, K. J. Verstrepen & V. van Noort. 2021. Integrated multi-omics analysis of mechanisms underlying yeast ethanol tolerance. J. Proteome Res. 20(8): 3840-3852. DOI: https://doi.org/10.1021/acs.jproteome.1c00139
Święciło, A. 2016. Cross-stress resistance in Saccharomyces cerevisiae yeast - new insight into an old phenomenon. Cell Stress Chaperones. 21(2): 187-200. DOI: https://doi.org/10.1007/s12192-016-0667-7
Taymaz-Nikerel, H., A. Cankorur-Cetinkaya & B. Kirdar. 2016. Genome-wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations. Front. Bioeng. Biotech. 4: 1-19. DOI: https://doi.org/10.3389/fbioe.2016.00017
Terradas-Cobas, L. & C. Céspedes-Payret. 2015. Genetically modified crops a methodological proposal of indicators. Environ. Dev. 15: 94-102. DOI: https://doi.org/10.1016/j.envdev.2015.04.004
Tse, T. J., D. J. Wiens & M. J. Reaney. 2021. Production of bioethanol — A review of factors affecting ethanol yield. Fermentation. 7(4), 268. DOI: https://doi.org/10.3390/fermentation7040268
Thomson, J. M., E. A. Gaucher, M. F. Burgan, D. W. De Kee, T. Li, J. P. Aris & S. A. Benner. 2005. Resurrecting ancestral alcohol dehydrogenases from yeast. Nat. Genet. 37: 630–635. DOI: https://doi.org/10.1038/ng1553
Udom, N., P. Chansongkrow, V. Charoensawan & C. Auesukaree. 2019. Coordination of the cell wall integrity and high-osmolarity glycerol pathways in response to ethanol stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 85(15): e00551-19. DOI: https://doi.org/10.1128/AEM.00551-19
Unrean, P., J. Gätgens, B. Klein, S. Noack & V. Champreda. 2018. Elucidating cellular mechanisms of Saccharomyces cerevisiae tolerant to combined lignocellulosic-derived inhibitors using high-throughput phenotyping and multiomics analyses. FEMS Yeast Res. 18(8): foy106. DOI: https://doi.org/10.1093/femsyr/foy106
Walker, G. M. & G. G. Stewart. 2016. Saccharomyces cerevisiae in the production of fermented beverages. Beverages. 2(4): 30. DOI: https://doi.org/10.3390/beverages2040030
Zhang, Q., D. Wu, Y. Lin, X. Wang, H. Kong & S. Tanaka. 2015. Substrate and product inhibition on yeast performance in ethanol fermentation. Energ. Fuel. 29(2): 1019-1027. DOI: https://doi.org/10.1021/ef502349v
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista de Biologia Neotropical / Journal of Neotropical Biology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The expontaneos submmition of the manuscript automaticaly implies in the cession of all patrimonial rights for the Journal of Neotropical Bilogy (RBN) after publication. The autor allow the right of first publication of the article to the RBN, under Creative Commons Attribution 4.0 (CC BY-NC 4.0) Licence.
There are garanties for the authors to the authorial and moral rights, for each one of the articles published by RBN, with permissions:
1. The use of article and contents for the education and researches.
2. The use of the article and their contents, linking to the Article on the web site of the RBN, allowing the divulgation on:
- institutional closed web (intranet).
- open access repositories.
3. Preparation and divulgation of the other publication derived from the article and its content, if there is citation of the original publication by RBN.
4. Make printed copies in small quatinties for personal use.