Phytoplankton diversity and functional traits in aquatic ecosystems in a conservation area in the Brazilian Savanna

Authors

DOI:

https://doi.org/10.5216/rbn.v19i1.70501

Keywords:

biodiversity, conservation areas, functional traits, phytoplankton

Abstract

Conservation areas plays a major role to contain the habitat’s loss and biodiversity. However, it’s barely known about the influence of these areas on aquatic ecosystems, and especially on the phytoplankton community. Here, we explore phytoplankton richness, abundance and functional traits in different aquatic ecosystems in a protected area in Niquelândia, Goiás (in the Brazilian Savana). We sampled four lagoons, six streams and one river, during the rainy season and recorded 78 taxa. In the lagoons, green algae, mixotrophic flagellates and desmids predominated, while in the streams and rivers, diatoms, green algae and mixotrophic flagellates predominated. Differences between lotic and lentic environments were evidenced, for richness and density, both for taxa and functional traits. The most frequent functional traits in the lagoons were flagella and mixotrophy, while in the streams and river, the presence of silica was also important. Most of the algae recorded were unicellular, nanoplanktonic and with ovoid and spherical cells. Thus, assessing phytoplankton diversity is the first step for monitoring aquatic ecosystems in conservation areas and for evaluating their effects on these environments. So, with these results it will be possible to compare ecosystems in protected areas with similar ecosystems in unprotected areas.

Downloads

Download data is not yet available.

Author Biographies

Anny Kelly Nascimento, Universidade Federal de Goiás (UFG), Instituto de Ciências Biológicas, Goiânia, Goiás, Brasil, annykelly@discente.ufg.br

Graduanda de Ciências Biológicas modalidade Bacharelado pela Universidade Federal de Goiás (UFG). Tem experiência na área de Botânica, com ênfase em Ecologia e taxonomia de fitoplâncton

Jascieli Carla Bortolini, Universidade Federal de Goiás (UFG), Instituto de Ciências Biológicas, Goiânia, Goiás, Brasil, jcbortolini@ufg.br

Docente Adjunta na Universidade Federal de Goiás, lotada no Instituto de Ciências Biológicas - Departamento de Botânica, onde atuo na Graduação (Ciências Biológicas e Ecologia & Análise Ambiental) e Pós-Graduação (Ecologia & Evolução). Atualmente sou vice-coordenadora do curso de Ciências Biológicas Bacharelado e membro do Núcleo Docente Estruturante do mesmo curso. Em minhas pesquisas utilizo a comunidade fitoplanctônica como modelo para responder perguntas e aplicar conceitos e testar teorias científicas em ambientes aquáticos continentais. Sou graduada em Licenciatura em Ciências Biológicas pela Universidade Estadual do Oeste do Paraná (2006), Mestra em Recursos Pesqueiros e Engenharia de Pesca pela Universidade Estadual do Oeste do Paraná (2010) e Doutora em Ciências Ambientais pelo programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, na Universidade Estadual de Maringá (2014). Também desenvolvi pós-doutorado (PDJ-CNPq) pela Universidade Estadual de Maringá (2014-2015) e pós-doutorado (PDJ-CNPq) pela Universidade Estadual do Oeste do Paraná (2016-2017).

References

Abonyi, A., Z. Hory & R. Ptacnik. 2018. Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshw. Biol. 63(2): 178-186.

APHA. American Public Health Association. 2005. Standard Methods for the Examination of Water & Wastewater. 21 ed. Washington, American Public Health Association.

Barbosa, L. G., G. J. M. Araujo, F. A. R. Barbosa & C. E. M. Bicudo. 2014. Morphological variation in Staurastrum rotula (Zygnemaphyceae, Desmidiales) in the deepest natural Brazilian lake: essence or accident?. Braz. J. Biol. Sci. 74(2): 371-381. DOI: https://doi.org/10.1590/1519-6984.24412

Berkes, F. 2009. Indigenous ways of knowing and the study of environmental change. J. R. Soc. N. Z. 68(14): 3697-3699.

Bellinger, E. G. & D. C., Sigee. 2010. Freshwater algae: identification and use as bioindicators. Chichester, Wiley Blackwell.

Bicudo, C. E. M. & M, Menezes. 2017. Gêneros de Algas de Águas Continentais do Brasil – Chave para Identificação e Descrições. São Paulo, Rima.

Burson, A., M. Stomp, E. Greenwell, J. Grosse & J. Huisman. 2018. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology. 99(5), 1108-1118.

Cardoso, M. R. D., F. F. N. Marcuzzo & J. R. Barros. 2014. Classificação Climática de Köppen-Geiger para o estado de Goiás e o Distrito Federal. Acta Geo. 8(16): 40-55. DOI: 10.5654/actageo2014.0004.0016

Cavalcante, K. P., S. C. Craveiro, A. J. Calado, T. A. Ludwig & L. D. S. Cardoso. 2017. Diversity of freshwater dinoflagellates in the State of Paraná, southern Brazil, with taxonomic and distributional notes. Fottea. 17(2): 240-263.

Coesel, P. F. 1982. Structural characteristics and adaptations of desmid communities. J. Ecol. 70: 163-177. DOI: https://doi.org/10.2307/2259871

Coesel, P. F. M. & L. Krienitz. 2008. Diversity and geographic distribution of desmids and other coccoid green algae. pp. 147-158. In: Foissner, W. & D. L. Hawksworth. Protist Diversity and Geographical Distribution. Dordrecht, Springer.

Costa, M. R. A., Menezes, R. F., Sarmento, H., Attayde, J. L. Stemberg, L. S. L. & V. Becker. 2019. Extreme drought favors potential mixotrophic organisms in tropical semi-arid reservoirs. Hydrobiologia. 831: 43-54.

Costa, W., E. Barbosa, R. Crysthian, F. Popov & B. Cabral. Retorno da Votorantim para Niquelândia. O Hoje, Goiânia, Goiás, 1 e 2 de abril de 2017. Disponível em <http://www.flip.ohoje.com>. Acesso em 10 mar. 2020.

Di Minin, E., A. Soutullo, L. Bartesaghi, M. Rios, M. N. Szephegyi & A. Moilanen. 2017. Integrating biodiversity, ecosystem services and socio-economic data to identify priority areas and landowners for conservation actions at the national scale. Biol. Conserv. 206: 56-64. DOI: https://doi.org/10.1016/j.biocon.2016.11.037

Freitas, N. C. W., C. G. Heinrich, T. Etges, G. de Souza Celente & E. A. Lobo. 2021. Assessment of potential reference sites for evaluating the ecological status of subtropical and temperate Brazilian lotic systems using the epilithic diatom community. Environ Sci Pollut Res Int. 28(7): 8698-8708. DOI: https://doi.org/10.1007/s11356-020-11136-w

Henson, S. A., B.B. Cael, S.R. Allen & S. Dutkiewicz. 2021. Future phytoplankton diversity in a changing climate. Nat. Comm., 12(1): 1-8.

Hillebrand, H., B. Blasius, E.T. Borer, J.M. Chase, J.A. Downing, B.K. Eriksson, C. Filstrup, W. Harpole, D. Hodapp, S. Larsen, A. Lewandowska, E. Seabloom, D. Van de Waal, A. Ryabov & A.B. Ryabov. 2018. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55(1): 169-184. DOI: https://doi.org/10.1111/1365-2664.12959

IBGE. Instituto Brasileiro de Geografia e Estatística. 2002. Área territorial oficial. Resolução da Presidência do IBGE de n° 5 (R.PR-5/02). Disponível em: /www.ibge.gov.br>. Acesso em 10 mar. 2020.

Lengyel, E., B. Szabo & C. Stenger-Kovacs. 2020. Realized ecological niche-based occupancy–abundance patterns of benthic diatom traits. Hydrobiologia, 847(14): 3115-3127. DOI: https://doi.org/10.1007/s10750-020-04324-9

Lobo, E. A., C. G. Heinrich, M. Schuch, C. E. Wetzel & L. Ector. 2016. Diatoms as Bioindicators in Rivers. pp. 245-271. In: Necchi JR, O. (Ed.). River Algae. Springer. DOI: https://doi.org/10.1007/978-3-319-31984-1_11

Lürling, M. 2021. Grazing resistance in phytoplankton. Hydrobiologia. 848(1): 237-249. DOI: https://doi.org/10.1007/s10750-020-04370-3

Litchman, E. & C. A. Klausmeier. 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39: 615-639. DOI: https://doi.org/10.1146/annurev.ecolsys.39.110707.173549

Komárek, J. & B. Fott. 1983. Chlorophyceae (Grünalgen), Ordiniung: Chlorococcales. pp. 1-1044. In: Huber-Pestalozzi G., H. Heynig & D. Mollenhauer. (Eds.) Das Phytoplankton des Süsswasser: systematik und biologie. Stuttgart, E. Schweizerbart’sche Verlagsbuchlandlung.

Kruk, C., V. L. M. Huszar, E. Peeters, S. Bonilla, L. Costa, M. Lurling, C. Reynolds & M. Scheffer. 2010. A morphological classification functional variation in phytoplankton. Freshw. Biol. 55: 614-627. DOI: 10.1111/j.1365-2427.2009.02298.x

Margalef, R. 1983. Limnología. Barcelona, Omega.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G.L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner. 2019. Vegan: Community ecology package. Disponível em: <https://cran.r-project.org/web/packages/vegan/index.html> Acesso em 06 mar. 2021.

Padisák, J., L. O. Crossetti & L. Naselli-Flores. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia. 621(1): 1-19. DOI: https://doi.org/10.1007/s10750-008-9645-0

Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins. 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. J. North Am. Benthol. Soc. 15(4): 481-495. DOI: https://doi.org/10.2307/1467800

Ryanobv, A., O. Kerimoglu, E. Litchman, I. Olenina, L. Roselli, A. Basset, E. Stanca & B. Blasius. 2021. Shape matters: the relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 24(4): 847-861.

Reynolds, C. S. 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status?. Hydrobiologia. 369: 11-26.

Reynolds, C. S. 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Germany, Ecology Inst.

Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo. 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5): 417-428. DOI: https://doi.org/10.1093/plankt/24.5.417

Reynolds, C. 2006. Ecology of phytoplankton. New York, Cambridge University Press.

Shannon, C. E. & W. Weaver. 1949. The mathematical theory of communication. Urbana, University of Illinois Press.

Sherman, E., J. K. Moore, F. Primeau & D. Tanouye. 2016. Temperature influence on phytoplankton community growth rates. Global Biogeochem. Cycles. 30(4): 550-559.

Silva, C. M. S., W. S. Rezende & M. A. S. Sales. 2020. Análise da qualidade da água do rio Traíras na Reserva Legado Verdes do Cerrado (LVC). Novos Cadernos NAEA. 23(1): 81-105.

Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodik. Int. Ver. Theor. Angew. Limnol. 9: 1-39. DOI: https://doi.org/10.1080/05384680.1958.11904091

Vries, A. 2020. ‘ggdendro’: Create Dendrograms and Tree Diagrams Using 'ggplot2'. Disponível em: <https://github.com/andrie/ggdendro>. Acesso em 20 fev. 2020.

Weithoff, G. & B. E. Beisner. 2019. Measures and approaches in trait-based phytoplankton community ecology–from freshwater to marine ecosystems. Front. Ecol. Environ. 6: 40.

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York, Springer-Verlag. Disponível em: <https://ggplot2.tidyverse.org>. Acesso em 20 fev. 2020.

Wilbraham, J. 2020. Conservation challenges for a microscopic world: Documenting desmids. Br. Psychol. Soc. Disponível em: <https://nhm.openrepository.com/handle/10141/622867>. Acesso em 20 jun. 2020.

Winder, M. & U. Sommer. 2012. Phytoplankton response to a changing climate. Hydrobiologia. 698(1): 5-16.

Published

2022-05-24

How to Cite

NASCIMENTO, A. K.; BORTOLINI, J. C. Phytoplankton diversity and functional traits in aquatic ecosystems in a conservation area in the Brazilian Savanna. Revista de Biologia Neotropical / Journal of Neotropical Biology, Goiânia, v. 19, n. 1, p. 9–22, 2022. DOI: 10.5216/rbn.v19i1.70501. Disponível em: https://revistas.ufg.br/RBN/article/view/70501. Acesso em: 5 jul. 2024.