Estimando a interconversão entre CO2 e a matéria orgânica no ambiente usando modelos matemáticos e algumas considerações
DOI:
https://doi.org/10.5216/rbn.v17i1.61889Palavras-chave:
volume da atmosfera, mudanças climáticas, modelos matemáticos, matéria orgânica, extinção de plantasResumo
Os objetivos foram usar modelos matemáticos para analisar a interconversão entre a quantidade de matéria orgânica produzida e a consequente variação na concentração de CO2 na atmosfera e discutir, amparado nos dados apresentados e da literatura, prováveis mudanças no ambiente da terra ao longo da sua idade. Constatações científicas e evidências indicam que as concentrações dos gases CO2 e O2 variaram ao longo da existência da terra e as variações foram em consequência do ambiente existente ao longo da evolução do planeta, resultando em mudanças em todos os outros processos que dependiam dos referidos gases. Reações químicas ocorreram e, como consequência surgiram, abióticamente, produtos orgânicos como o petróleo e outros, dando origem à química orgânica e, redução drástica da concentração de CO2 e elevação do O2 na atmosfera. Nas plantas atuais para cada O2 produzido na etapa fotoquímica da fotossíntese um CO2 é assimilado na etapa bioquímica. Amparado por esta relação e pelos resultados apresentados neste trabalho pode-se inferir que os primeiros organismos fotossintetizantes se originaram na terra numa Era em que a concentração do gás CO2 já se encontrava possivelmente numa concentração abaixo de 1000 ppm. Com estes organismos teve início a bioquímica. Os resultados sugerem que a redução na concentração do CO2tenha sido linear em relação a idade da terra, antes da origem dos organismos fotossintetizantes. Esta relação não existiu a partir da origem destes organismos, em função das grandes alterações que ocorreram no ambiente. Há indícios de que em certos períodos as concentrações de CO2 reduziram-se abaixo do nível mínimo para certas plantas resultando na sua extinção e de organismos que dependiam delas
Downloads
Referências
Abelson, P. H. 1978. Organic matter in the earth's crust. Ann. Rev. Earth Planet. Sci. 6: 325-51.
Bambach, R. K. 2006. Phanerozoic Biodiversity Mass Extinctions, Annu. Rev. Earth Planet. Sci. 34: 127 – 155.
Bellefroid, E. J., A. V. S. Hood, P. F. Hoffman, M. F. Thomas, C. T. Reinhard & N. J. Planavsky. 2018. Constraints on Paleoproterozoic atmospheric oxygen levels. PNAS, 115: 8104-8109. DOI: www.pna.org/cgi/doi/10.1073/pnas.1806216115
Blankenship, R. E. 2014. Molecular mechanisms of photosynthesis. 2. ed. Oxford, Wiley Blackwell.
Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. Zhao & A. Cescatti. 2017. Local temperature response to land cover and management change driven by nonradiative processes. Nat. Clim. Change. 7: 296–302. DOI:10.1038/nclimate3250
Chave, J., R. Condit, S. Lao, J. P. Caspersen, R. B. Foster & S. P. Hubbell. 2003. Spatial and temporal variation of biomass in a tropical forest: result from a large census plot in Panama. J. Ecology. 91: 240-252.
Cox P. M., R. A. Betts, C. D. Jones, S. A. Spall & I. J. Totterdell. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 408: 184-187. DOI: https://doi.org/10.1038/35041539
Ehleringer, J. R., R. F. Sage, L. B. Flanagan & R. W. Pearcy. 1991. Climate change and the evolution of C4 Photosynthesis. Trends Ecol. Evol. 6: 95-99. DOI: https://doi.org/10.1016/0169-5347(91)90183-X
Ehleringher, J. R., T. C. Cerling & M. D. Dearing. 2005. A history of atmospheric CO2 and its effects on plant, animals, and ecosystems. Ecological Studies. v. 177. New York, Springer.
Ehleringher, J. R., T. C. Cerling & B. R. Helliker. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia. 112: 285-299.
Farquhar, J., A. L. Zerkle & A. Bekker. 2011. Geological constraints on the origin of oxygenic photosynthesis. Photosyn. Res. 107: 11–36.
Farquhar, G. D. & S. Von Caemmerer. 1982. Modelling of photosynthetic response to environmental conditions, pp. 549–588. In: Lange, O. L, P.S. Nobel, C. B. Osmond & H. Ziegler (Eds.). Physiological plant ecology II. Water relations and carbon assimilation, Encyclopedia of Plant Physiology. v. 12B. Berlin/Heidelberg/New York, Springer.
Foucher, P. Y., A. Chédin, R. Armante, C. Boone, C. Crevoisier & P. Bernath. 2011. Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument. Atmos. Chem. Phys. 11: 255-2470. DOI: https://doi.org/10.5194/acp-11-2455-2011.
Franck, S., K. Kossacki & C. Bounama. 1999. Modelling the global carbon cycle for the past and future evolution of the earth system. Chem. Geol. 159: 305–317.
Graham, D. & E. A. Chapman. 1979. Interactions between photosynthesis and respiration in higher plants. pp. 150-160. In: Pirson, A. & M. H. Zimmerman (Eds). Photosynthesis II. Photosynthetic carbon metabolism and related process. Berlin, Springer-Velag.
Gowik, U. & P. Westhoff. 2011.The path from C3 to C4 photosynthesys. Plant Physiol. 155: 56-63.
Hatch, M. D. & C. R. Slack. 1966.Photosynthesis by sugarcane leaves. A new carboxilation reaction and the pathway of sugar formation. Biochem. J. 101: 103-111.
Heldt, H. W. & B. Piechulla. 2011. Plant Biochemistry. 4 ed. London, Elsevier.
Howe, P. D., E. M. Markowitz, T. M. Lee, C. Y. Ko, & A. Leiserowitz. 2013. Global perceptions of local temperature change. Nat. Clim. Change. 3: 352–356.
IPCC. 2007. Intergovernmental Panel on Climate Change Fourth Assessment Report: Climate Change 2007. Synthesis Report. World Meteorological Organization, Geneva.
Kerbauy, G. B. 2008. Fisiologia Vegetal. 2 ed. Rio de Janeiro, Editora Guanabara-Koogan S. A.
Makarieva, A. M. & V. G. Gorshkov. 2007. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst.Sci. 11: 1013-1033.
Negron-Mendoza A. & S. Ramos-Bernal. 2000. Chemical Evolution in the Early Earth. pp. 71-84. In: Chela-Flores J., G. A. Lemarchand & J. Oró (Eds). Astrobiology. Dordrecht, Springer. DOI: https://doi.org/10.1007/978-94-011-4313-4_6
Osborne, C. P. & D. J. Beerling. 2006. Nature´s green revolution: the remarkable evolutionary rise of C4 plants. Phil. Trans. R. Soc. B. 361: 173-194. DOI: https://doi.org/10.1098/rstb.2005.1737
Portes T. A., S. I. C. Carvalho, I. P. Oliveira & J. Kluthcouski. 2000. Análise de crescimento de uma cultivar de braquiária em cultivo solteiro e consorciado com cereais. Pesq. Agropec. Brasil. 35: 1349-1358.
Portes, T. A. & S. I. C. Carvalho. 2009. Crescimento e alocação de fitomassa de cinco gramíneas forrageiras em condições de Cerrado. Rev. Bio. Neotrop. 6: 01-14.
Portes, T. A. 2020. Earth CO2 dynamics: from CO2 to organic matter and back CO2, a flow estimate. Rev. Biol. Neotrop. 17: 47-55. DOI: https://doi.org/10.5216/rbn.v17i1.59419
Ruzmaikin, A. & A. Byalko. 2015. On the relationship between atmospheric carbon dioxide and global temperature. Am. J. Clim. Change. 4: 181-186. DOI: http://dx.doi.org/10.4236/ajcc.2015.43014
Saatchia, S. S., N. L. Harris, S. Brown, M. Lefskyd, E. T. A. Mitchard, W. Salas, B. R. Zutta, W. Buermann, S. L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman & A. Morel. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS. 108: 9899–9904. DOI: www.pnas.org/cgi/doi/10.1073/pnas.1019576108
Sage, R. F. 1995. Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Global Change Biol. 1: 93-106. DOI: https://doi.org/10.1111/j.1365-2486.1995.tb00009.x
Sage, R. F. 1999. Why C4 photosynthesis. pp. 3-16. In: Sage R. & R. K. Monson (Eds.). C4 plant biology. San Diego, Academic Press.
Sage, R. F. 2004 The evolution of C4 photosynthesis. New Phytol. 161: 341-370.
Sage, R. F. 2005. Atmospheric CO2, Environmental Stress, and the Evolution of C4 Photosynthesis. pp. 185-213. In: Ehleringer, J. R., T. Cerling & M. D. Dearing (Eds.). A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. New York, Springer.
Salati, E. & C. A. Nobre. 1991. Possible climatic impacts of tropical deforestation. Clim. Change. 19: 177-196.
Sheil, D. & D. Murdiyarso. 2009. How forests attract rain: an examination of a new hypothesis. BioScience. 59: 341–347. DOI: https://doi.org/10.1525/bio.2009.59.4.12
Shukla J., C. Nobre & P. Sellers. 1990. Amazon deforestation and climate change. Science. 247: 1322-1325. DOI: 10.1126/science.247.4948.1322
Sikolia, S., E. Beck, & J. C. Onyango. 2009. Carbon dioxide compensation points of some dicots of the Centrospermeae species and their ecological implications for agroforestry. Int. J. Botany. 5: 67-75.
Schopf, J. W. 1983. Earth's earliest biosphere: Iis origin and evolution. Princeton, University Press.
Taiz, L; E. Zeiger, I. M Møller, & A. Murphy. 2014. Plant physiology and development. 6 ed. Sunderland, Sinauer Associates/ Oxford University Press.
Tolbert, N. E. 1979. Glycolate metabolism by higher plants and algae. pp. 338-351. In: Gibbs, M. & E. Latzko (Eds). Photosynthesis II: Photosynthetic carbon metabolism and related processes (Encyclopedia of Plant Physiology New Ser.6). Berlin, Springer-Verlag.
Tolbert, N.E., C. Benker & E. Beck. 1995. The oxygen and carbon dioxide compensation points of C3 plants: possible role in regulation atmospheric oxygen. Proc. Natl Acad. Sci. 92: 11230-11233.
Walker, D. A. 1992. Energy, plants and Man. Brighton, East Sussex, Oxygraphics Limited.
Walker, J. C. G. 1990. Precambrian evolution of the climate system. Palaeogeogr., Palaeoclimatol., Paiaeoecol. Global Planet. Change. 2: 261-289. DOI: https://doi.org/10.1016/0921-8181(90)90005-W
Downloads
Publicado
Como Citar
Edição
Seção
Licença
O envio espontâneo de qualquer submissão implica automaticamente na cessão integral dos direitos patrimoniais à Revista de Biologia Neotropical / Journal of Neotropical Biology (RBN), após a sua publicação. O(s) autor(es) concede(m) à RBN o direito de primeira publicação do seu artigo, licenciado sob a Licença Creative Commons Attribution 4.0 (CC BY-NC 4.0).
São garantidos ao(s) autor(es) os direitos autorais e morais de cada um dos artigos publicados pela RBN, sendo-lhe(s) permitido:
1. Uso do artigo e de seu conteúdo para fins de ensino e de pesquisa.
2. Divulgar o artigo e seu conteúdo desde que seja feito o link para o Artigo no website da RBN, sendo permitida sua divulgação em:
- redes fechadas de instituições (intranet).
- repositórios de acesso público.
3. Elaborar e divulgar obras derivadas do artigo e de seu conteúdo desde que citada a fonte original da publicação pela RBN.
4. Fazer cópias impresas em pequenas quantidades para uso pessoal.