A Potencial use of edible mushrooms Pleurotus ostreatoroseus Singer (Pleurotaceae) and Lentinus sajor-caju (Fr.) Fr. (Polyporaceae) in metal remediation processes.

Autores

  • Rodrigo Paidano Alves Universidade Federal do Pampa, Núcleo de Estudos da Vegetação Antártica
  • Sibele Marques Bolson Universidade Federal do Pampa, Núcleo de Estudos da Vegetação Antártica
  • Margéli Pereira de Albuquerque Universidade Federal do Pampa, Núcleo de Estudos da Vegetação Antártica
  • Filipe de Carvalho Victoria Universidade Federal do Pampa, Núcleo de Estudos da Vegetação Antártica
  • Antonio Batista Pereira Universidade Federal do Pampa, Núcleo de Estudos da Vegetação Antártica

DOI:

https://doi.org/10.5216/rbn.v14i2.48421

Palavras-chave:

Bioremediation, biosorption, filamentous fungi, heavy metals, mycoremediation.

Resumo

Increased heavy metal pollution generated through anthropogenic activities into the environment required the need for environmental recovery strategies, such as mycoremediation. The aim of the present study was to assess the effect of iron (Fe) in the mycelial growth of Pleurotus ostreatoroseus Singer and Lentinus sajor-caju (Fr.) Fr. The growth response was evaluated on Potato Dextrose Agar medium with varying concentrations (0 ppm, 10 ppm, 20 ppm, 40 ppm and 80 ppm) of the iron metal. Ferrous sulfate heptahydrate (FeSO4.7H2O) were evaluated in this study. The daily mycelia growths were measured and compared. The biomass production was determined using the same plates of the evaluation of the growth of mycelia. Results revealed that the growth of mycelia of P. ostreatoroseus occurs slowly in medium containing different iron concentrations, but in relationship to L. sajor-caju was able to produce the largest mycelial dry mass. Overall this study suggests that P. ostreatosroseus can be used as promising option for removal of iron metal in bioremediation strategies.

Downloads

Não há dados estatísticos.

Referências

Bindraban, P.S., C. Dimkpa, L. Nagarajan, A. Roy & R. Rabbinge. 2015. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 51: 897–911.

Castella, A. 1967. Maintenance and cultivation of common pathogenic fungi of man in sterile distilled water. Further researches. J. Trop. Med. Hyg. 70: 181-184.

de Albuquerque, M.P., R.M.N. Peil & J.S. do Nascimento. 2011. Crescimento micelial de Lentinus sajor caju (Fr.) Fr. E Pleurotus spp. em diferentes resíduos agrícolas. Biosci. J. 28: 895-902.

Dixit, R., E. Wasiullah, D. Malaviya, K. Pandiyan, U. Singh, A. Sahu, R. Shukla, B. Singh, J. Rai, P. Sharma, H. Lade & D. Paul. 2015. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 7: 2189–2212.

Donini, L., E. Bernardi, E. Minotto & J.S. do Nascimento. 2005. Desenvolvimento in vitro de Pleurotus spp. sob a influência de diferentes substratos e dextrose. Arq. Inst. Biológico 72: 331–338.

Donini, L.P., E. Bernardi & J.S. do Nascimento. 2006. Desenvolvimento in vitro de Agaricus brasiliensis em meios suplementados com diferentes farelos. Pesqui. Agropecuária Bras. 41: 995–999.

Dulay, R. 2015. Growth response and mycoremediation activity of Coprinus comatus on heavy metal contaminated media. Mycosphere 6: 1–7.

El-Kassas, H.Y., M.A. Aly-Eldeen & S.M. Gharib. 2016. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanol. Sin. 35: 89–98.

Gong, Y., J. Tang & D. Zhao. 2016. Application of iron sulfide particles for groundwater and soil remediation: A review. Water Res. 89: 309–320.

Guzmán, G. 2008. El cultivo de los hongos comestibles: con especial atención a especies tropicales y subtropicales en esquilmos y residuos agroindustriales. 2rd ed., México, Instituto Politécnico Nacional.

Jia, Z., J. Deng, N. Chen, W. Shi, X. Tang & H. Xu. 2017. Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. J. Soils Sediments 17: 315–325.

Kala?, P. & L. Svoboda. 2000. A review of trace element concentrations in edible mushrooms. Food Chem. 69: 273–281.

Kapahi, M. & S. Sachdeva. 2017. Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresour. Bioprocess. 4:32.

Koutrotsios, G., E. Larou, K.C. Mountzouris & G.I. Zervakis. 2016. Detoxification of olive mill wastewater and bioconversion of olive crop residues into high-value-added biomass by the choice edible mushroom Hericium erinaceus. Appl. Biochem. Biotechnol. 180: 195–209.

Li,X.,X.Gui,Y.Rui,W.Ji,Z.Yu&S.Peng. 2014. Bt-transgenic cotton is more sensitive to CeO 2 nanoparticles than its parental non-transgenic cotton. J. Hazard. Mater. 274: 173–180.

Lonergan, G., C. Jones & D. Mainwaring. 1993. The effect of pH and temperature on radial growth rate and biomass production for selected Australian white-rot fungi in comparison with two strains of Phanerochaete chrysosporium. Mater. Org. Ger. 28: 309-317.

Mancilha, J.C. 2006. Estudo do comportamento químico do ferro micro e nanoparticulado na despoluição de solos contaminados com metais pesados. Dissertação (Mestrado em Engenharia e Tecnologia Espaciais/Ciência e Tecnologia de Matérias e Sensores). Instituto Nacional de Pesquisas Ambientais, São Paulo, 87p.

Mimmo, T., D. Del Buono, R. Terzano, N. Tomasi, G. Vigani, C. Crecchio, R. Pinton, G. Zocchi & S. Cesco. 2014. Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. Eur. J. Soil Sci. 65: 629–642.

Mleczek, M., P. Niedzielski, P. Kala?, A. Budka, M. Siwulski, M. G?secka, P. Rzymski, Z. Magdziak & K. Sobieralski. 2016. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ. Sci. Pollut. Res. 23: 16280–16295.

Neuwirth, E. 2014. RColorBrewer: ColorBrewer palettes. R package version 1.1-2.

Niu, J., Y. Dai, H. Guo, J. Xu & Z. Shen. 2013. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor. J. Hazard. Mater. 248: 254–260.

Oladipo, O.G., O.O. Awotoye, A. Olayinka, C.C. Bezuidenhout & M.S. Maboeta. 2017. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz. J. Microbiol. 1-9.

Oladipo, O.G., O.O. Awotoye, A. Olayinka, O.T. Ezeokoli, M.S. Maboeta & C.C. Bezuidenhout. 2016a. Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Bioremediation J. 20: 287–297.

Oladipo, O.G., A. Olayinka & O.O. Awotoye. 2016b. Maize (Zea mays L.) performance in organically amended mine site soils. J. Environ. Manage. 181: 435–442.

Ong, G.H., X.H. Ho, S. Shamkeeva, A.S.M.S. Fernando & L.S. Wong. 2017. Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediat. J. 27: 59–63.

Prakash, V. 2017. Mycoremediation of environmental pollutants. Int J Chem Tech Res 10: 149–155.

Rui, M., C. Ma, Y. Hao, J. Guo, Y. Rui, X. Tang, Q. Zhao, X. Fan, Z. Zhang, T. Hou & S. Zhu. 2016. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea). Front. Plant Sci. 7: 1-10.

Slaninova, A., J. Machova & Z. Svobodova. 2014. Fish kill caused by aluminium and iron contamination in a natural pond used for fish rearing: a case report. Vet. Med. (Praha) 59: 573-581.

Sprynskyy, M., B. Buszewski, A.P. Terzyk & J. Namie?nik. 2006. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 304: 21–28.

Team, R.C. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing. R version 3.2. 1 Vienna, Austria.

Vaseem, H., V.K. Singh & M.P. Singh. 2017. Heavy metal pollution due to coal washery effluent and its decontamination using a macrofungus, Pleurotus ostreatus. Ecotoxicol. Environ. Saf. 145: 42–49.

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis Springer-Verlag. N. Y. Wickham, H. 2007. Reshaping data with the

reshape package. J. Stat. Softw. 21: 1–20.

Wu,M.,Y.Xu,W.Ding,Y.Li&H.Xu.2016. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin. Appl. Microbiol. Biotechnol. 100: 7249–7261.

Ye, L., L. Li, L. Wang, S. Wang, S. Li, J. Du, S. Zhang & H. Shou. 2015. MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Front. Plant Sci. 6: 1-10.

Zafar, S., F. Aqil & I. Ahmad. 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol. 98: 2557–2561.

Zargar, S.M., G.K. Agrawal, R. Rakwal & Y. Fukao. 2015. Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Front. Plant Sci. 6: 1-4.

Zou, Y., X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat & X. Wang. 2016. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ. Sci. Technol. 50: 7290–7304.

Zuo, Y. & F. Zhang. 2011. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339: 83–95.

Downloads

Publicado

14-03-2018

Como Citar

ALVES, R. P.; BOLSON, S. M.; DE ALBUQUERQUE, M. P.; VICTORIA, F. de C.; PEREIRA, A. B. A Potencial use of edible mushrooms Pleurotus ostreatoroseus Singer (Pleurotaceae) and Lentinus sajor-caju (Fr.) Fr. (Polyporaceae) in metal remediation processes. Revista de Biologia Neotropical / Journal of Neotropical Biology, Goiânia, v. 14, n. 2, p. 82–90, 2018. DOI: 10.5216/rbn.v14i2.48421. Disponível em: https://revistas.ufg.br/RBN/article/view/48421. Acesso em: 22 dez. 2024.

Edição

Seção

Artigos