Triagem in vitro do extrato etanólico das folhas de Spondias purpurea L. sobre a fermentação ruminal

Autores

Resumo

Estratégias nutricionais que otimizam o uso de recursos forrageiros têm recebido destaque, incluindo práticas que favorecem a degradabilidade ruminal e a atividade microbiana. Aditivos naturais ricos em fitoquímicos demonstram ser capazes de modular a microbiota e os processos fermentativos, configurando alternativas promissoras na nutrição de ruminantes. O estudo teve por objetivo avaliar os efeitos do extrato etanólico das folhas de Spondias purpurea L. sobre a fermentação ruminal in vitro. A pesquisa utiliza delineamento inteiramente casualizado com três tratamentos: controle, monensina e extrato vegetal. A cinética de produção de gás, a degradabilidade da matéria seca e os valores de pH são avaliados em diferentes tempos de incubação. O extrato apresenta alcaloides, flavonoides, taninos, saponinas e terpenos, sugerindo potencial modulador da microbiota ruminal. Os resultados evidenciam que o extrato aumenta a produção de gases e a degradabilidade da matéria seca. Observa redução no tempo de colonização microbiana e manutenção do pH dentro da faixa adequada para fermentação. Embora a taxa de crescimento da fermentação seja inferior à do controle, a produção acumulada de gás é maior com o extrato, indicando uma maior fermentação. A monensina, por sua vez, reduz a taxa de fermentação e o volume de gases. Conclui-se que o extrato de Spondias purpurea L. modula a fermentação ruminal in vitro, representando uma alternativa promissora. Recomenda-se avaliar diferentes concentrações e os seus efeitos sobre ácidos graxos de cadeia curta, produção de metano, nitrogênio amoniacal e degradabilidade da fibra e dos carboidratos não fibrosos, bem como a condução de experimentos in vivo.
Palavras-chave: aditivos naturais; metabolismo microbiano; modulação ruminal; ruminantes.

Downloads

Não há dados estatísticos.

Referências

1. Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, Mcsweeney CS. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev. 2003;27(5):663-693. Disponível em: https://doi.org/10.1016/S0168-6445(03)00072-X

2. Mahesh MS, Mohini M. Crop residues for sustainable livestock production. Adv Dairy Res. 2014;2:e108. Disponível em: https://doi.org/10.4172/2329-888X.1000e108

3. Ulfina G, Lemma F, Tekalign T, Amanuel B. Rumen manipulation: one of the promising strategies to improve livestock productivity – review. Dairy Vet Sci J. 2019;9(2):555758. Disponível em: https://doi.org/10.19080/JDVS.2019.09.555758

4. Suriyapha C, Pongsub S, Sommai S, Wongtangtong E, Chuenwarin W, Phaikaeo L, Saetiew K, Rattanasuwan P. In vitro fermentation characteristics, microbial changes and gas production of microencapsulated phytonutrient pellets at varying dietary crude protein levels. Sci Rep. 2025;15:11214. Disponível em: https://doi.org/10.1038/s41598-025-95748-7

5. Ungerfeld EM. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol. 2020;11:589. Disponível em: doi: https://doi.org/10.3389/fmicb.2020.00589

6. Bergen WG, Bates DB. Ionophores: their effect on production efficiency and mode of action. J Anim Sci. 1984;58(6):1465-1483.

7. Saraiva MMS, Lim K, Do Monte DFM, Givisiez PEN, Alves LBR, De Freitas Neto OC, et al. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol. 2022.

8. Martin C, Morgavi D, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal. 2010;4(3):351-365.

9. Hodgson J. Grazing management: science into practice. Longman; 1990.

10. Van Soest PJ. Nutritional ecology of the ruminant. 2nd ed. Cornell University Press; 1994.

11. Franco GL, Barros LF, Rocha MST, Medeiros LQ, D’Oliveira MC, Diogo JMS, Ramos AKB. Suplementação proteico-energética sobre o consumo voluntário e parâmetros ruminais em novilhos. Rev Bras Saúde Prod An. 2010;11(2):371-385

12. Jamarun N, Pazla R, Zain M, Arief A. Comparison of in vitro digestibility and rumen fluid characteristics between the tithonia (Tithonia diversifolia) with elephant grass (Pennisetum purpureum). IOP Conf Ser Earth Environ Sci. 2019;287:012019. Disponível em: https://doi.org/10.1088/1755-1315/287/1/012019

13. Ahmed E, Fukuma N, Hanada M, Nishida T. The efficacy of plant-based bioactives supplementation to different proportion of concentrate diets on methane production and rumen fermentation characteristics in vitro. Animals. 2021;11:1029. Disponível em: https://doi.org/10.3390/ani11041029

14. Engels C, Gräter D, Esquivel P, Jiménez VM, Gänzle MG, Schieber A. Characterization of phenolic compounds in jocote (S purpurea L.) peels by ultra-high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res Int. 2012.

15. Njoku PC, Akumefula MI. Phytochemical and nutrient evaluation of S. mombin leaves. Pakistan J Nutr. 2007;6(8):613-615.

16. Mazza PHS, Jaeger SMPL, Silva FL, Lima AGVO, Hora DC, Barbosa AM, Andrade EA, Silva Júnior JM, Bezerra LR, Oliveira RL. Effects of dietary inclusion of dry umbu fruit pulp residue (S. tuberosa Arr. Cam) on intake, ingestive behaviour, digestibility, nitrogen balance and ruminal pH in sheep. J Anim Feed Sci. 2022;31(1):55–64. Disponível em: https://doi.org/10.22358/jafs/146396/2022

17. Eniolorunda OO, Awojobi HA, Ettu RO, Agunbiade JA, Oyekunle MA. Effect of S. mombin on intake and digestibility in West African Dwarf sheep fed graded levels of whole cassava root meal–based diets. Assiut J Agric Sci. 2015;46(6):27–34.

18. Harborne J. Phytochemical methods: a guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall; 1984.

19. Raaman N. Phytochemical techniques. New Delhi: New India; 2006.

20. Association of Official Analytical Chemists – AOAC. Official methods of analysis. 18th ed. Gaithersburg: AOAC; 2007.

21. Mertens DR. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int. 2002;85:1217-1240. Disponível em: https://doi.org/10.1093/jaoac/85.6.1217

22. Sniffen CJ, O’Connor JD, Van Soest PJ, et al. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J Anim Sci. 1992;70:3562-3577.

23. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-3597.

24. Theodorou MK, et al. A simple gas production method using a pressure transducer to determine fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994;48:185-197.

25. De Jesus Pereira TC, Pereira MLA, Moreira JV, et al. Effects of alkaloid extracts of mesquite pod on the products of in vitro rumen fermentation. Environ Sci Pollut Res. 2017;24:4301-4311. Disponível em: https://doi.org/10.1007/s11356-016-7761-3.

26. Maurício RM, et al. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim Feed Sci Technol. 1999;79:321-330.

27. Menezes DR, Costa RG, Araújo GGL, et al. Cinética ruminal de dietas contendo farelo de mamona destoxificado. Arq Bras Med Vet Zootec. 2015;67(2):636-641. https://doi.org/10.1590/1678-7040

28. Figueiredo MP, et al. Determinação da relação entre a pressão e volume através da fermentação da raiz de mandioca tratada com uréia, feno de tifton 85 e silagem de milho para instalação da técnica in vitro de produção de gases. In: Reunião Anual da Sociedade Brasileira de Zootecnia; 2003; Santa Maria, RS. Anais. Santa Maria: Sociedade Brasileira de Zootecnia; 2003.

29. Laird AK. Dynamics of relative growth. Growth. 1965;29:249-263.

30. SAS Institute Inc. User’s guide, version 9.2. Cary, NC: SAS Institute Inc.; 2001.

31. Marisco G, Santos RX, Aguiar R, Brendel M, Pungartnik C. Antifungal potential of terpenes from S purpurea L. leaf extract against Moniliophthora perniciosa that causes witches broom disease of Theobroma cacao. Int J Complement Altern Med. 2017;7(1):00215. Disponível em: https://doi.org/10.15406/ijcam.2017.07.00215

32. Oliveira IST, Fernandes T, Santos ARD, González Aquino C, Vega Britez GD, Vargas Junior FM. Phytochemical composition and effects of aqueous extracts from Moringa oleifera leaves on in vitro ruminal fermentation parameters. Ruminants. 2025;5(1):4. Disponível em: https://doi.org/10.3390/ruminants5010004

33. Baihaqi ZA, Widiyono I, Angeles AA, Suwignyo B, Nurcahyo W. Anthelmintic activity of Carica pubescens aqueous seed extract and its effects on rumen fermentation and methane reduction in Indonesian thin-tailed sheep: An in vitro study. Veterinary World. 2023;16(7):1421-1428. Disponível em: https://doi.org/10.14202/vetworld.2023.1421-1428

34. Madanahall Ramesh M, Shankar NS, Venkatappa AH. Driving/critical factors considered during extraction to obtain bioactive enriched extracts. Pharmacognosy Reviews. 2024;18(35):68-81. Disponível em: https://doi.org/10.5530/phrev.2024.18.7

35. Yelugudari B, Mesram N, Karnati PT. 9-Hexadecenoic acid rich HPLC fraction of Pithecellobium dulce methanolic seed extract exhibits potential anti-inflammatory activity by inhibiting IL-8, IL-6, and PGE2: phytochemical characterization, in-vitro and in-vivo evaluation. Journal of Research in Pharmacy. 2023;27(5):1733-1750. Disponível em: https://doi.org/10.29228/jrp.458

36. Ali MAMM. Phytochemical screening and antibacterial activity of Pulicaria crispa aerial parts extract. Asian Journal of Basic Science & Research. 2020;2(2):9-14. Disponível em: https://doi.org/10.38177/AJBSR.2020.2202

37. Russell JB, Strobel HJ. Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology. 1989;55(1):1-6. Disponível em: https://doi.org/10.1128/aem.55.1.1-6.1989.

38. Patra AK, Saxena J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 2010;71(11-12):1198-1222. Disponível em: https://doi.org/10.1016/j.phytochem.2010.05.010

39. Kholif AE, Anele UY, Patra AK, Varadyova Z. Editorial: The use of phytogenic feed additives to enhance productivity and health in ruminants. Frontiers in Veterinary Science. 2021;8:685262. Disponível em: https://doi.org/10.3389/fvets.2021.685262

40. Choi Y, Lee Y, Lee SJ, Kim HS, Eom JS, Jo SU, Lee SS. Dose-response effects of Poncirus trifoliata extract on in vitro ruminal methane production, fermentation, and microbial abundance. Italian Journal of Animal Science. 2022;21(1):595-604. Disponível em: https://doi.org/10.1080/1828051X.2022.2034540

41. Santos ET, Pereira MLA, Silva CFPG, Souza-Neta LC, Geris R, Martins D, Santana AEG, Barbosa LCA, Silva HGO, Freitas GC, Figueiredo MP, Oliveira FF, Batista R. Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion. Int. J. Mol. Sci. 2013;14(4):8496-8516. Disponível em: https://doi.org/10.3390/ijms14048496

42. Cushnie TPT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011;38:99–107.

43. Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure–activity relationship and mechanism. Curr Med Chem. 2015;22:132–149.

44. Babii C, Mihalache G, Bahrin LG, Neagu A, Birsa LM, Gostin I, Mihai CT, Sa L, Stefan M. A novel synthetic flavonoid with potent antibacterial properties: in vitro activity and proposed mode of action. PLoS One. 2018;13:1–15.

45. Oskoueian E, Abdullah N, Oskoueian A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int. 2013;1–8.

46. Seradj AR, Abecia L, Crespo J, Villalba D, Fondevila M, Balcells J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high-concentrate diets. Anim Feed Sci Technol. 2014;197:85–91.

47. Cieslak A, Zmora P, Pers-Kamczyc E, et al. Effects of tannins source (Vaccinium vitis-idaea L.) on rumen microbial fermentation in vivo. Anim Feed Sci Technol. 2012;176:102–106.

48. Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30(12):3875-3883. Disponível em: https://doi.org/10.1016/0031-9422(91)83426-L

49. Patra AK, Saxena J. The effect and mode of action of saponins on microbial population and fermentation in the rumen and ruminant production. Nutr Res Rev. 2009;22:204–219.

50. Bodas R, Prieto N, García-González R, et al. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol. https://doi.org/10.1016/j.anifeedsci.2012.07.010

51. Patra AK, Saxena J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric. PMID: 20815041.

52. Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric. 2006;86:2010–2037. https://doi.org/10.1002/jsfa.2577Digita

53. Ramos-Morales E, de la Fuente G, Duval S, et al. Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure. Front Microbiol. 2017;8:1–13. https://doi.org/10.3389/fmicb.2017.00399

54. Jayanegara A, Wina E, Takahashi J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Australas J Anim Sci. 2014;27:1426–1435. https://doi.org/10.5713/ajas.2014.14086

55. Cobellis G, Marinucci MT, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: a review. Sci Total Environ. 2016;545–546:556–568. https://doi.org/10.1016/j.scitotenv.2015.12.103

56. Benchaar C, Chaves AV, Fraser GR, et al. Effects of essential oils and their components on in vitro rumen microbial fermentation. Can J Anim Sci. 2007;87:413–419. https://doi.org/10.4141/CJAS07012

57. Calsamiglia S, Busquet M, Cardozo PW, et al. Essential oils as modifiers of rumen microbial fermentation. J Anim Sci. 2007;90:2580–2595. https://doi.org/10.3168/jds.2006-644

58. Castillejos L, Calsamiglia S, Ferret A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J Dairy Sci. 2006;89(7):2649–2658. Disponível em: https://doi.org/10.3168/jds.S0022-0302(06)72341-4

59. Chao SC, Young DG, Oberg CJ. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J Essent Oil Res. 2000;12:639–649. https://doi.org/10.1080/10412905.2000.9712177

60. Wallace RJ, McEwan NR, McIntosh FM, et al. Natural products as manipulators of rumen fermentation. Asian-Australas J Anim Sci. 2002;15:1458–1468. https://doi.org/10.5713/ajas.2002.1458

61. Oliveira JS, Zanine ADM, Santos EM. Diversidade microbiana no ecossitema ruminal. Revista Electrónica de Veterinaria. 2007;8(6):1-12

62. Valadares Filho SC, Pina DS. Fermentação ruminal. In: Berchielli TT, Pires AV, Oliveira SG, editores. Nutrição de ruminantes. 2. ed. Jaboticabal: Funep; 2011. p. 151-176.

63. Xie X, Wang JK, Liu JX, et al. Temporal microbial colonization on different forages is driven by the rumen environmental conditions. Animal Microbiome. 2025;7:46. Disponível em: https://doi.org/10.1186/s42523-025-00407-x

64. Menke KH, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development. 1988;28:7-55.

65. Alvarado-Ramírez ER, Maggiolino A, Elghandour MMMY, Rivas-Jacobo MA, Ballesteros-Rodea G, Palo PD, Salem AZM. Impact of co-ensiling of maize with Moringa oleifera on the production of greenhouse gases and the characteristics of fermentation in ruminants. Animals. 2023;13(764). Disponível em: https://doi.org/10.3390/ani13040764

66. Mertens, DR. Rate and extent of digestion. Journal of Dairy Science. 1993;76(12):323-333. Disponível em: https://doi.org/10.3168/jds.S0022-0302(93)77730-9

67. Owens, FN, Goetsch AL. Digesta passage and microbial protein synthesis. In: Milligan LP, Grovum WL, Dobson A, eds. Control of Digestion and Metabolism in Ruminants. Englewood Cliffs, NJ: Prentice-Hall; 1986. p. 196-226.

68. Abd’Quadri-Abojukoro AN, Nsahlai IV. Evaluating the effects of some selected medicinal plant extracts on feed degradability, microbial protein yield, and total gas production in vitro. Animals. 2023;13(702). Disponível em: https://doi.org/10.3390/ani13040702

69. Wei X, Ouyang K, Long T, Liu Z, Li Y, Qiu Q. Dynamic variations in rumen fermentation characteristics and bacterial community composition during in vitro fermentation. Fermentation. 2022;8(6):276. Disponível em: https://doi.org/10.3390/fermentation8060276

70. Zhang M, Liang G, Zhang X, Lu X, Li S, Wang X, Yang W, Yuan Y, Jiao P. The gas production, ruminal fermentation parameters, and microbiota in response to Clostridium butyricum supplementation on in vitro varying with media pH levels. Frontiers in Microbiology. 2022;13:960623. Disponível em: https://doi.org/10.3389/fmicb.2022.960623

71. Hassan F, Arshad MA, Ebeid HM, Rehman MS, Khan MS, Shahid S, Yang C. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Frontiers in Veterinary Science. 2020;7:575801. Disponível em: https://doi.org/10.3389/fvets.2020.575801

72. Thomas EE. Field responses to the feeding of Rumensin®. Elanco Animal Health. 2006.

73. Chalupa W, Corbett W, Brethour JR. Effects of monensin and amichloral on rumen fermentation. Journal of Animal Science. 1980;51(1):170-179. Disponível em: https://doi.org/10.2527/jas1980.511170x

74. Ahmed MG, Al-Sagheer AA, El-Zarkouny SZ, et al. Potential of selected plant extracts to control severe subacute ruminal acidosis in vitro as compared with monensin. BMC Veterinary Research. 2022;18:356. Disponível em: https://doi.org/10.1186/s12917-022-03457-4

Publicado

2026-01-26

Como Citar

LIMA, Eduardo Henrique Santos de; PEDREIRA, Márcio dos Santos; SILVA, Gabriele Marisco da; RIOS, Grazielle Goes; EVANGELISTA, Vanessa Santos Souza; NASCIMENTO, Luiza Maria Gigante; AMORIM, Juan Mark Silva. Triagem in vitro do extrato etanólico das folhas de Spondias purpurea L. sobre a fermentação ruminal. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 27, 2026. Disponível em: https://revistas.ufg.br/vet/article/view/83824. Acesso em: 1 fev. 2026.

Edição

Seção

ZOOTECNIA

Declaração de dados

  • Os dados de pesquisa estão disponíveis sob demanda, condição justificada no manuscrito