Metionina hidroxi análoga e DL-metionina: efeitos na histomorfometria intestinal e do aparelho reprodutivo de poedeiras leves na fase de produção
Resumo
Avaliou-se a bioeficácia relativa do ácido 2-hidroxi-4-(metiltio)butanóico sal de cálcio (HMBA-Ca) em comparação a DL-metionina (DLM) aos níveis de metionina em poedeiras leves nos parâmetros histomorfométricos e hepáticos. Um total de 1080 poedeiras Hy-line W80 foram distribuídas aleatoriamente em arranjo fatorial: 2x4+1 (2 fontes, 4 níveis de suplementação cada: 0.46, 0.54, 0.56 e 0.58 % e 1 grupo isento de suplementação). No intestino, aves alimentadas com DLM tiveram maior largura, altura e área de superfície de vilo e relação vilo cripta (p<0.05). A bioeficácia foi de 99, 78, 83 e 79 %, respectivamente. A suplementação de metionina reduziu a probabilidade de esteatose (p<0.05). A suplementação proporcionou redução do perfil lipídico hepático (p<0.05). DLM apresentou maior espessura de epitélio do magno e os níveis influenciaram altura e largura de dobra uterínica (p<0.05). A bioeficácia foi de 70, 131 e 76 %. A suplementação de metionina independente da fonte utilizada foi benéfica ao desenvolvimento da mucosa intestinal, do útero, magno, e menor incidência de esteatose hepática. De acordo com a bioeficácia, aves alimentadas com DLM apresentam maior biodisponibilidade em relação a HMBA-Ca. Contudo, recomenda-se o nível de 0.58 % de metionina com a DLM por ter proporcionado os melhores resultados.
Palavras-chave: morfometria intestinal; gordura hepática; dobras uterinas.
Downloads
Referências
1. Santana MHM, Costa FCP, Guerra RG, Júnior JF, Lima MR. Methionine plus Cystine Levels for Light Laying Hens on Growth Phase. Revista Principia. 2020; 53: 1-10. https://doi.org/10.18265/1517-0306a2020v1n53p180-189
2. Song B, Fu M, He F, Hao H, Wang Y, Nie Q, Wu B. Methionine Deficiency Affects Liver and Kindney Health, Oxidative Stress, and Oleum Mucosal Immunity in Broilers. Frontiers in veterinary Science. 2021; 8: 722567. https://doi.org/10.3389/fvets/2021/722567
3. Moraes LR, Delicato MRA, Cru AS, Silva HTFNP, Alves CVBV, Campos DB, Saraiva EP, Costa FP, Guerra RR. Methionine supplementing effects on intestine, liver and uterus morphology, and on positivity and expression of Calbindin-D28k and TRPV6 epithelial calcium carriers in laying quail in thermoneutral conditions and under thermal stress. Plos One. 2021; 16(1): e0245615. https://doi.org/10.1371/journal.pone.0245615
4. Timmons J, Chang ET, Wang J-Y, Rao JN. Polyamines and gut mucosal homeostasis. Journal of Gastrointestinal and digestive system. 2014; 2: 001. PMCID: PMC4165078. https://pmc.ncbi.nlm.nih.gov/articles/PMC4165078/
5. Peng JL, Bai SP, Wnag JP, Ding XM, Eng QF, hang KY. Methionine deficiency decreases hepatic lipid exportation and induces liver lipid accumulation in broilers. Poultry Science. 2018; 97: 4315-4323. https://doi.org/10.3382/ps/pey317
6. Vázquez-Añón M, Bertin G, Mercier Y, Reznik G, Roberton J-L. Review of the chemistry, metabolism, and dose response of two supplemental methionine sources and the implications in their relative bioefficacy. World's Poultry Science Journal. 2017; 73: 725-736. https://doi.org/10.1017/S0043933917000551
7. Lemme A, Li Z, Dorigam J. Meta-Analyses of Methionine Source Concept Validation Trials in Broilers. Animals. 2024; 14: 1771. https://doi.org/10.3390/ani14121771
8. Ferreira TSF, Soares MN, Kaneko IN, Pinheiro SG, Costa FGP, Júnior RFB. Relative bioeffectiveness of hydroxy calcium salt analogous methionine compared to DL-methionine on the performance of light laying hens in the production phase. Brazilian Animal Science/ Ciência Animal Brasileira 2025; 26. https://doi.org/10.1590/1809-6891v26e-81818E
9. Fickler J, Heimbeck W, Hess V, Reimann I, Reising J, Wiltafsky M, Zimmer U. AMINODat 5.0 Animal Nutritionist’s Information Edge [Online] 2016. https://www.academia.edu/38777571/AMINODat_5_0_The_animal_nutritionists_information_edge
10. Olympus America Inc. Olympus cellSens Software, cellSens Dimension [software]. Center Valley (PA): Olympus America Inc. Avaialble from https://evidentscientific.com/en/products/software/cellsens
11. Ishak K, Baptista A, Bianchi L, Callea F, Groote JDe, Gudat F, Denk H, Desmet V, Korb G, MacSween, RN. Histological grading and staging of chronic hepatites. Journal of Hepatology. 1995; 22: 696-699. https://doi.org/10.1016/0168-8278(95)80226-6
12. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry; 1957; 226: 497-509
13. Gilglioni EH, Campos-Shimada LB, Maciel ERM, Ishii-Iwamoto EL, Salgueiro-Pagadigorria CL. Analytical methods for evaluation of the fatty acid metabolism in rat liver. Acta Scientiarum Biological Sciences. 2018; 49: e40040., https://doi.org/10.4025/actascibiolsci.v40i1.40040
14. Labtest diagnóstica S.A. Cholesterol Liquiform e Triglycerides Liquiform: instruções de uso. Lagoa Santa, MG, Brasil, 2018.
15. Agresti A. An introduction to categorical data analysis. (2a ed.). Jonh Wiley and Sons Inc. New York, 2007.
16. Littell RC, Henry PR, Lewis AJ, Ammerman CB. Estimation of relative bioavailability of nutrients using SAS procedures. Journal Animal Science. 1997; 75: 2672–2683. https://doi.org/10.2527/1997.75102672x
17. Wang WW, Qiao SY, Li DF. Amino acids and gut function. Amino Acids. 2009; 37: 105–110. https://doi.org/10.1007/s00726-008-0152-4
18. Ruan D, Fouad AM, Fan Q, Xia W, Wang S, Chen W, Zheng C. Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin, and antioxidant-related gene expression in laying duck breeders. British Journal of Nutrition. 2018; 199: 121-130. https://doi.org/10.1017/S0007114517003397
19. Murray-Stewart T, Woster PM, Casero JrRA. Targeting polyamine metabolism for cancer therapy and prevention. Biochemical Journal. 2016; 437: 2937–2953. https://doi.org/10.1042/BCJ20160383
20. Nelson DL, Cox MM. Princípios de bioquímica de Lehninger. (7a ed.). Artmed, Porto Alegre. 2019.
21. Mengjie X, Zhao X, Yu M, Wang G, Feng J, Zhang M. The amino acid pattern and dynamics of body protein, body fat deposition in male and female broilers under different temperatures. Poultry Science. 2024; 103: 103525. https://doi.org/10.1016/j.psj.2024.103525
22. Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos, LV, Lee SA, Kwon WB, Mathai JK, Navarro, DMDL, Jaworski, NW, Stein HH. Non-antibiotic feed additives in diets for pigs. Animal Nutrition. 2018; 4: 113-125. https://doi.org/10.1016/j.aninu.2018.01.007
23. Martín-Venegas R, Rodriguez-Lagunas, MJ, Geraert P, Ferrer R. Monocarboxylate transporter 1 mediates DL-2-hydroxy- (4-methylthio) butanoic acid transport across the apical membrane of Caco-2 cell monolayers. Journal Nutrition. 2007; 137: 49-54. https://doi.org/10.1093/jn/137.1.49
24. Opapeju FO, Htoo JK, Dapoza C, Nyachoti CM. Bioavailability of methionine hydroxy analog-calcium salt relative to dl-methionine to support nitrogen retention and growth in starter pigs. Animal. 2012; 6: 1750–1756. https://doi.org/10.1017/S1751731112000869
25. Kulinski A, Vance DE, Vance JE. A choline-deficient diet in mice inhibits neither the CDP-choline pathway for phosphatidylcholine synthesis in hepatocytes nor apolipoprotein B secretion. Journal of Biological Chemistry. 2004; 279: 23916–23924. https://doi.org/10.1074/jbc.m312676200
26. Dobrzyn P, Dobrzyn AM, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM, Ntambi JM. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proceedings of the National Acadamy od Sciences. 2004; 101: 6409–6414. https://doi.org/10.1073/pnas.0401627101
27. Peng JL, Bai SP, Wang JP, Ding XM, Zeng QF, Zhang KY. Methionine deficiency decreases hepatic lipid exportation and induces liver lipid accumulation in broilers. Poultry Science. 2018; 97: 4315-4323. https://doi.org/10.3382/ps/pey317
28. Chen W, Guo JX, Chang P. The effect of taurine on cholesterol metabolism. Molecular Nutrition Food Research. 2012; 56: 681-6190. https://doi.org/10.1002/mnfr.201100799
29. Stover PJ, Durga J, Field MS. Folate nutrition and blood-brain barrier dysfunction. Current Opinion in Biotechnology. 2017;44: 146-152. https://doi.org/10.1016/j.copbio.2017.01.006
30. Groebner AE, Rubio-Aliaga I, Schulke K, Reichenbach HD, Daniel H, Wolf E, Meyer HH, Ulbrich SE. Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction. 2011; 14: 685-695. https://doi.org/10.1530/REP-10-0533
31. Lima MR, Costa FGF, Guerra RR, Silva JHVDa, Rabello CBV, Miglino MA, Lobato, GBV, Netto SBS, Dantas LS. Threonine:lysine ratio for Japanese quail hen diets. Journal of Applied Poultry Research. 2013; 22: 260-268. https://doi.org/10.3382/japr.2012-00670
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2026 Ciência Animal Brasileira / Brazilian Animal Science

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
Declaração de dados
-
Os dados de pesquisa estão disponíveis sob demanda, condição justificada no manuscrito





















