Controle de sólidos suspensos e compostos nitrogenados por meio de biorremediação e substratos artificiais em um sistema BFT emergente para Tilápia-do-Nilo

Autores

DOI:

https://doi.org/10.1590/1809-6891v26e-80623E

Resumo

Resumo: Os efeitos da biorremediação com Bacillus spp. e de um substrato artificial foram comparados quanto à qualidade da água, aos parâmetros zootécnicos e hematológicos de tilápia-do-nilo (Oreochromis niloticus) em um sistema BFT (biofloc technology). Doze unidades experimentais foram divididas em três grupos: biorremediador (1,0 g de bacilos por m³ de água diariamente), inserção de substrato artificial (SA) e controle, em quadruplicata. Ambos os tratamentos reduziram a concentração de NH₃ (biorremediador: 0,73 mg·L-¹; SA: 0,69 mg·L-¹) em relação ao grupo controle (1,33 mg·L-¹). Entretanto, o tratamento com biorremediador aumentou o nitrito (31,71 mg·L-¹) em comparação ao controle (12,76 mg·L-¹), enquanto o SA não apresentou diferença significativa entre os tratamentos. Os volumes de flocos foram menores nos tratamentos com SA (1,75 mL), biorremediador (3,10 mL) e controle (3,87 mL), respectivamente. Os tratamentos reduziram a conversão alimentar aparente (CAA) (biorremediador: 0,84 e SA: 0,86) em relação ao grupo controle (1,07). Por outro lado, o SA promoveu uma taxa de crescimento específico (TCE) superior (3,05 %·dia-¹) em comparação ao biorremediador (2,97 %·dia-¹) e ao controle (2,94 %·dia-¹), que não diferiram entre si. A porcentagem de trombócitos circulantes variou significativamente entre os tratamentos, sendo maior no grupo biorremediador (46,4 %), seguido pelo grupo com substrato artificial (34,0 %) e pelo controle (18,5 %). O biorremediador e o substrato artificial promoveram melhorias na qualidade da água, por meio da redução de NH₃ e da manutenção do volume de floco; proporcionaram melhor desempenho zootécnico e alteraram o perfil hematológico da tilápia-do-nilo.
Palavras-chave: Bacillus; biofloco; biorremediação; Oreochromis niloticus.

Downloads

Não há dados estatísticos.

Referências

FAO. The state of world fisheries and aquaculture. Rome: Food and Agriculture Organization of the United Nations; 2022. Available from: https://www.fao.org/documents/card/en?details=cc0461en.

Peixe BR. Associação Brasileira da Piscicultura. Anuário 2024. Available from: https://www.peixebr.com.br/anuario-2024/

Lieke T, Meinelt T, Hoseinifar SH, Pan B, Straus DL, Steinberg CEW. Sustainable aquaculture requires environmental‐friendly treatment strategies for fish diseases. Rev Aquac. 2020;12(2):943–65. Available from: https://doi.org/10.1111/raq.12365

Hlordzi V, Kuebutornye FKA, Afriyie G, Abarike ED, Lu Y, Chi S, et al. The use of Bacillus species in maintenance of water quality in aquaculture: a review. Aquac Rep. 2020; 18:100503. Available from: https://doi.org/10.1016/j.aqrep.2020.100503

Emerenciano M, Gaxiola G, Cuzon G. Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Hasan MR, New MB, editors. On-farm feeding and feed management in aquaculture. Rome: FAO; 2013. p.301–28. Available from: https://doi.org/10.5772/53902

Jatobá A, Borges YV, Silva FA. Biofloc: sustainable alternative for water use in fish culture. Arq Bras Med Vet Zootec. 2019;71(3):1076–80. Available from: https://doi.org/10.1590/1678-4162-10309

Abakari G, Luo G, Kombat EO. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: a review. Aquac Fish. 2020;5(6):303–10. Available from: https://doi.org/10.1016/j.aaf.2020.07.009

Jasmin MY, et al. Potential of bioremediation in treating aquaculture sludge: review article. Aquaculture. 2020;519:734905. Available from: https://doi.org/10.1016/j.aquaculture.2019.734905

He X, Abakari G, Tan H, Liu W, Luo G. Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system. Aquaculture. 2023;566:739216. Available from: https://doi.org/10.1016/j.aquaculture.2022.739216

James G, Das BC, Jose S, Kumar R. Bacillus as an aquaculture friendly microbe. Aquac Int. 2021;29(1):323–53. Available from: https://doi.org/10.1007/s10499-020-00630-0

Tachibana L, Telli GS, Dias DC, Gonçalves GS, Guimarães MC, Ishikawa CM, et al. Bacillus subtilis and Bacillus licheniformis in diets for Nile tilapia (Oreochromis niloticus): effects on growth performance, gut microbiota modulation and innate immunology. Aquac Res. 2021;52(4):1630–42. Available from: https://doi.org/10.1111/are.15016

Lara GR, Poersch LH, Wasielesky W Jr. The quantity of artificial substrates influences the nitrogen cycle in the biofloc culture system of Litopenaeus vannamei. Aquac Eng. 2021;94:102171. Available from: https://doi.org/10.1016/j.aquaeng.2021.102171

Bracino AA, Concepcion RS, Dadios EP, Vicerra RRP. Biofiltration for recirculating aquaponic systems: a review. In: Proceedings of the 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). IEEE; 2020. p.1–6. Available from: https://doi.org/10.1109/HNICEM51456.2020.9400136

Robles-Porchas GR, Gollas-Galván T, Martínez-Porchas M, Martínez-Cordova LR, Miranda-Baeza A, Vargas-Albores F. The nitrification process for nitrogen removal in biofloc system aquaculture. Rev Aquac. 2020;12(4):2228–49. Available from: https://doi.org/10.1111/raq.12431

El-Sayed A-FM. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev Aquac. 2021;13(1):676–705. Available from: https://doi.org/10.1111/raq.12494

Kumar S, Anand PSS, De D, Ghoshal TK, Alavandi SV, Vijayan KK. Integration of substrate in biofloc-based system: effects on growth performance, water quality and immune responses in Penaeus monodon. Aquac Res. 2019;50(10):2986–99. Available from: https://doi.org/10.1111/are.14256

da Paz Serra F, Wasielesky W Jr, Abreu PC. Nitrogen salt fertilization vs. substrate availability: two strategies to improve nitrification during the production of the white shrimp Litopenaeus vannamei. Aquaculture. 2021;543:736997. Available from: https://doi.org/10.1016/j.aquaculture.2021.736997

Ebeling JM, Timmons MB, Bisogni JJ. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 2006;257(1–4):346–58. Available from: https://doi.org/10.1016/j.aquaculture.2006.03.019

Avnimelech Y. Biofloc technology: a practical guide book. Baton Rouge: The World Aquaculture Society; 2015. 258 p. Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/20113266301

Schveitzer R, Arantes R, Baloi MF, Costódio PFS, Arana LV, Seiffert WQ, et al. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc system) at different stocking densities: effects on microbial activity, water quality and production rates. Aquac Eng. 2013;54:93–103. Available from: https://doi.org/10.1016/j.aquaeng.2012.12.003

APHA. Standard methods for the examination of water and wastewater. Washington (DC): American Public Health Association; 1995. Available from: http://books.scielo.org

Ranzani-Paiva MJT, Pádua SB, Tavares-Dias M, Egami MI. Métodos para análise hematológica em peixes. Maringá: EDUEM; 2013. 140 p. Available from: https://books.google.com.br

Zar JH. Biostatistical analysis. Upper Saddle River: Pearson Prentice Hall; 2010. 994 p.

Mengistu SB, Mulder HA, Benzie JAH, Komen H. A systematic literature review of the major factors causing yield gap by affecting growth, feed conversion ratio and survival in Nile tilapia (Oreochromis niloticus). Rev Aquac. 2020;12(2):524–41. Available from: https://doi.org/10.1111/raq.12331

El-Sayed HE, Okon EM, Abdel-Warith A-WA, Younis EM, Dowidar HA, Elbahnaswy S, et al. In-water Bacillus species probiotic improved water quality, growth, hemato-biochemical profile, immune regulatory genes and resistance of Nile tilapia to Aspergillus flavus infection. Aquac Int. 2024;32:7087–102. Available from: https://doi.org/10.1007/s10499-024-01503-6

Roveda M, de Menezes CCA, Bolívar-Ramírez NC, Owatari MS, Jatobá A. Acidifying remediation and microbial bioremediation decrease ammoniacal nitrogen, orthophosphates, and total suspended solids levels in intensive Nile tilapia farming under biofloc conditions. Aquaculture. 2024;580:740292. Available from: https://doi.org/10.1016/j.aquaculture.2023.740292

Hargreaves JA. Biofloc production systems for aquaculture. Stoneville: Southern Regional Aquaculture Center; 2013. 12 p. Available from: https://cabidigitallibrary.org

Soaudy MR, Ghonimy A, Greco LSL, Chen Z, Dyzenchauz A, Li J. Total suspended solids and their impact in a biofloc system: current and potentially new management strategies. Aquaculture. 2023;572:739524. Available from: https://doi.org/10.1016/j.aquaculture.2023.739524

Ferreira L, et al. Biofilm versus biofloc: are artificial substrates for biofilm production necessary in the BFT system? Aquac Res. 2016;24(4):921–30. Available from: https://doi.org/10.1007/s10499-015-9961-0

Guimarães MC, Cerezo IM, Fernandez-Alarcon MF, Natori MM, Sato LY, Kato CAT, et al. Oral administration of probiotics (Bacillus subtilis and Lactobacillus plantarum) in Nile tilapia (Oreochromis niloticus) vaccinated and challenged with Streptococcus agalactiae. Fishes. 2022;7(4):211. Available from: https://doi.org/10.3390/fishes7040211

de Morais APM, Abreu PC, Wasielesky W Jr, Krummenauer D. Effect of aeration intensity on the biofilm nitrification process during the production of the white shrimp Litopenaeus vannamei (Boone, 1931) in biofloc and clear water systems. Aquaculture. 2020;514:734516. Available from: https://doi.org/10.1016/j.aquaculture.2019.734516

Fazio F. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture. 2019;500:237–42. Available from: https://doi.org/10.1016/j.aquaculture.2018.10.030

Rodrigues TAR, Owatari MS, Veiga PTN, Povh JA, Kasai RYD, Pilarski F, et al. Bacillus subtilis improves non‐specific immunity and survival of Pseudoplatystoma reticulatum challenged with Aeromonas hydrophila during the feeding training phase. Aquac Res. 2021;52(5):2348–52. Available from: https://doi.org/10.1111/are.15055

Ortiz M, Esteban MÁ. Biology and functions of fish thrombocytes: a review. Fish Shellfish Immunol. 2024;148:109509. Available from: https://doi.org/10.1016/j.fsi.2024.109509

Costa L, et al. Use of Bacillus subtilis multiplicate in the water used for biofloc formation: growth, hemato-biochemistry, intestinal bacteria colonies, and bacterial resistance evaluations of Nile tilapia. Aquaculture. 2024;590:741039. Available from: https://doi.org/10.1016/j.aquaculture.2024.741039

Saldanha L, et al. Periphyton use on microbial dynamics, water quality, and Nile tilapia growth in rearing tanks. Pesq Agropec Bras. 2021;56. Available from: https://doi.org/10.1590/S1678-3921.pab2021.v56.01520

Hassaan MS, Soltan MA, Jarmołowicz S, Abdo HS. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquac Nutr. 2018;24:83–93. Available from: https://doi.org/10.1111/anu.12536

Santos GG, et al. Probiotic mix of Bacillus spp. and benzoic organic acid as growth promoter against Streptococcus agalactiae in Nile tilapia. Aquaculture. 2023;566:739212. Available from: https://doi.org/10.1016/j.aquaculture.2022.739212

Publicado

2025-10-13

Como Citar

LASALA, Maísa de Lima; DARTORA, Amanda; STOCKHAUSEN, Larissa Stockhausen; MORAIS, Keren Fagundes; MACHADO, Andressa Oliveira; FERREIRA, Giulia Beatrice; ANDRADE, Jaqueline; JATOBÁ, Adolfo. Controle de sólidos suspensos e compostos nitrogenados por meio de biorremediação e substratos artificiais em um sistema BFT emergente para Tilápia-do-Nilo. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 26, 2025. DOI: 10.1590/1809-6891v26e-80623E. Disponível em: https://revistas.ufg.br/vet/article/view/80623. Acesso em: 5 dez. 2025.

Edição

Seção

MEDICINA VETERINÁRIA

Declaração de dados

  • Os dados de pesquisa estão disponíveis sob demanda, condição justificada no manuscrito