Desenvolvimento e avaliação de aplicativo móvel para determinação da densidade mineral em ossos secos de cães

Autores

DOI:

https://doi.org/10.1590/1809-6891v26e-80154E

Resumo

Sabe-se que, anualmente, são diagnosticadas cerca de 9 milhões de fraturas osteoporóticas no mundo e, por se tratar de uma doença considerada um problema de saúde pública, assintomática e, até certo ponto negligenciada, o diagnóstico precoce da diminuição da densidade mineral óssea ainda constitui um desafio. Neste trabalho, utilizando o coeficiente de correlação de Pearson, comparou-se os resultados da densitometria óssea radiográfica (DORX) obtidas utilizando como referencial densitométrico um penetômetro confeccionado em liga de alumínio 6063 ABNT e um aplicativo móvel especialmente desenvolvido para realizar a aferição, com resultados obtidos pela absortometria de raios-X de dupla energia (DXA). Foram analisados ossos secos (porções ultradistais de rádios e colos femorais) de cães sadios. Os resultados da análise da porção ultradistal do rádio obtidos por meio do aplicativo mostraram correlação boa quando comparados com a DXA (R=0,7) e, para o colo femoral, correlação muito boa (R=0,8). Concluiu-se que a aplicação móvel analisada neste estudo pode, em um futuro próximo, se tornar uma ferramenta importante para análise densidade mineral óssea de maneira eficaz.

Downloads

Referências

Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006 Dec;17(12):1726-33. https://doi.org/10.1007/s00198-006-0172-4

Hamdy RC. Osteoporosis, the deafening silent epidemic. South Med J. 2002 Jun;95(6):567-8. doi: https://doi.org/10.1097/00007611-200206000-00001. (https://pubmed.ncbi.nlm.nih.gov/12081211/)

Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017 Nov;104:29-38. https://doi.org/10.1016/j.bone.2017.01.024

Estanislau CA., Rahal, S.C., Müller, S.S., Louzada, M.J.Q., Estanislau, C.A., Araújo, F.A.P. Evaluation of femur of orchiectomized guinea pigs by bone densitometry using dual-energy X-ray absortiometry (DXA) and mechanical testing. Vet e Zootec. 2010 mar.; 17(1):104-112. (https://repositorio.unesp.br/items/3468dd3f-5496-4311-a849-ea449a6a33d6)

Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996 May 18;312(7041):1254-9. https://doi.org/10.1136/bmj.312.7041.1254

Leslie WD, Crandall CJ. Population-Based Osteoporosis Primary Prevention and Screening for Quality of Care in Osteoporosis, Current Osteoporosis Reports. Curr Osteoporos Rep. 2019 Dec;17(6):483-490. https://doi.org/10.1007/s11914-019-00542-w

Rubin KH, Friis-Holmberg T, Hermann AP, Abrahamsen B, Brixen K. Risk assessment tools to identify women with increased risk of osteoporotic fracture: complexity or simplicity? A systematic review. J Bone Miner Res. 2013 Aug;28(8):1701-17. https://doi.org/10.1002/jbmr.1956

Eftekhar-Sadat B, Ghavami M, Toopchizadeh V, Ghahvechi Akbari M. Wrist bone mineral density utility in diagnosing hip osteoporosis in postmenopausal women. Ther Adv Endocrinol Metab. 2016 Dec;7(5-6):207-211. https://doi.org/10.1177/2042018816658164

Ilic Stojanovic O, Vuceljic M, Lazovic M, Gajic M, Radosavljevic N, Nikolic D, Andjic M, Spiroski D, Vujovic S. Bone mineral density at different sites and vertebral fractures in Serbian postmenopausal women. Climacteric. 2017 Feb;20(1):37-43. https://doi.org/10.1080/13697137.2016.1253054

Mithal A, Bansal B, Kyer CS, Ebeling P. The Asia-Pacific Regional Audit-Epidemiology, Costs, and Burden of Osteoporosis in India 2013: A report of International Osteoporosis Foundation. Indian J Endocrinol Metab. 2014 Jul;18(4):449-54. https://doi.org/10.4103/2230-8210.137485.

Harvey NC, McCloskey EV, Mitchell PJ, Dawson-Hughes B, Pierroz DD, Reginster JY, Rizzoli R, Cooper C, Kanis JA. Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures. Osteoporos Int. 2017 May;28(5):1507-1529. https://doi.org/10.1007/s00198-016-3894-y

Aziziyeh R, Amin M, Habib M, Garcia Perlaza J, Szafranski K, McTavish RK, Disher T, Lüdke A, Cameron C. The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina. J Med Econ. 2019 Jul;22(7):638-644. https://doi.org/10.1080/13696998.2019.1590843

Elliot-Gibson V, Bogoch ER, Jamal SA, Beaton DE. Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: a systematic review. Osteoporos Int. 2004 Oct;15(10):767-78. https://doi.org/10.1007/s00198-004-1675-5.

Giangregorio L, Papaioannou A, Cranney A, Zytaruk N, Adachi JD. Fragility fractures and the osteoporosis care gap: an international phenomenon. Semin Arthritis Rheum. 2006 Apr;35(5):293-305. https://doi.org/10.1016/j.semarthrit.2005.11.001.

Haaland DA, Cohen DR, Kennedy CC, Khalidi NA, Adachi JD, Papaioannou A. Closing the osteoporosis care gap: increased osteoporosis awareness among geriatrics and rehabilitation teams. BMC Geriatr. 2009 Jul 14;9:28. https://doi.org/10.1186/1471-2318-9-28.

Mautalen C, Schianchi A, Sigal D, Gianetti G, Vidan V, Bagur A, González D, Mastaglia S, Oliveri B. Prevalence of Osteoporosis in Women in Buenos Aires Based on Bone Mineral Density at the Lumbar Spine and Femur. J Clin Densitom. 2016 Oct;19(4):471-476. https://doi.org/10.1016/j.jocd.2016.01.003.

Pinheiro MM, Ciconelli RM, Martini LA, Ferraz MB. Clinical risk factors for osteoporotic fractures in Brazilian women and men: the Brazilian Osteoporosis Study (BRAZOS). Osteoporos Int. 2009 Mar;20(3):399-408. https://doi.org/10.1007/s00198-008-0680-5.

Associação Brasileira de Normas Técnicas. NBR 8117: Alumínio e suas ligas – Arames, barras, perfis e tubos extrudados - Requisitos. Rio de Janeiro, 10.p. 2011. (https://www.normas.com.br/visualizar/abnt-nbr-nm/1122/abnt-nbr8117-aluminio-e-suas-ligas-arames-barras-perfis-e-tubos-extrudados-requisitos)

Asensio-Lozano J, Suárez-Peña B, Vander Voort GF. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products. Materials (Basel). 2014 May 30;7(6):4224-4242. doi: https://doi.org/10.3390/ma7064224.

Vulcano LC, Santos FAMd, Godoy CLBd. Determinação da densidade mineral óssea da extremidade distal do rádio-ulna em gatos: correlação entre peso, sexo e idade. Cienc Rural. 2008;38(1):124-8. doi: https://doi.org/10.1590/S0103-84782008000100020

Lucas K, Nolte I, Galindo-Zamora V, Lerch M, Stukenborg-Colsman C, Behrens BA, et al. Comparative measurements of bone mineral density and bone contrast values in canine femora using dual-energy X-ray absorptiometry and conventional digital radiography. BMC veterinary research. 2017;13(1):130. https://doi.org/10.1186/s12917-017-1047-y

Robertson G, Wallace R, Simpson AHRW, Dawson SP. Preoperative measures of bone mineral density from digital wrist radiographs. Bone Joint Res. 2021 Dec;10(12):830-839. https://doi.org/10.1302/2046-3758.1012.BJR-2021-0098.R1

Lucas K, Nolte I, Galindo-Zamora V, Lerch M, Stukenborg-Colsman C, Behrens BA, Bouguecha A, Betancur S, Almohallami A, Wefstaedt P. Comparative measurements of bone mineral density and bone contrast values in canine femora using dual-energy X-ray absorptiometry and conventional digital radiography. BMC Vet Res. 2017 May 11;13(1):130. https://doi.org/10.1186/s12917-017-1047-y

Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. Eur J Rheumatol. 2017 Mar;4(1):46-56. https://doi.org/10.5152/eurjrheum.2016.048.

Abdelmohsen AM. Comparison of Central and Peripheral Bone Mineral Density Measurements in Postmenopausal Women. J Chiropr Med. 2017 Sep;16(3):199-203. https://doi.org/10.1016/j.jcm.2017.08.001

Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1-129. https://pubmed.ncbi.nlm.nih.gov/7941614/

Wani IM, Arora S. Computer-aided diagnosis systems for osteoporosis detection: a comprehensive survey. Med Biol Eng Comput. 2020 Sep;58(9):1873-1917. https://doi.org/10.1007/s11517-020-02171-3

Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging. 2021 Jul;54(1):12-35. https://doi.org/10.1002/jmri.27260

Dendere R, Whiley SP, Douglas TS. Computed digital absorptiometry for measurement of phalangeal bone mineral mass on a slot-scanning digital radiography system. Osteoporos Int. 2014 Nov;25(11):2625-30. https://doi.org/10.1007/s00198-014-2792-4

Cook WD. An investigation of the radiopacity of composite restorative materials. Aust Dent J. 1981 Apr;26(2):105-12. https://doi.org/10.1111/j.1834-7819.1981.tb02443.x

Blake GM, Fogelman I. An update on dual-energy x-ray absorptiometry. Semin Nucl Med. 2010 Jan;40(1):62-73. https://doi.org/10.1053/j.semnuclmed.2009.08.001.

El Maghraoui A, Roux C. DXA scanning in clinical practice. QJM. 2008 Aug;101(8):605-17. https://doi.org/10.1093/qjmed/hcn022

Ravn P, Overgaard K, Huang C, Ross PD, Green D, McClung M. Comparison of bone densitometry of the phalanges, distal forearm and axial skeleton in early postmenopausal women participating in the EPIC Study. Osteoporos Int. 1996;6(4):308-13. https://doi.org/10.1007/BF01623390

Sotoca JM, Iñesta JM, Belmonte MA. Hand bone segmentation in radioabsorptiometry images for computerised bone mass assessment. Comput Med Imaging Graph. 2003 Nov-Dec;27(6):459-67. https://doi.org/10.1016/s0895-6111(03)00053-3

Yang SO, Hagiwara S, Engelke K, Dhillon MS, Guglielmi G, Bendavid EJ, Soejima O, Nelson DL, Genant HK. Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study. Radiology. 1994 Sep;192(3):857-9. https://doi.org/10.1148/radiology.192.3.8058960

Kastl S, Sommer T, Klein P, Hohenberger W, Engelke K. Accuracy and precision of bone mineral density and bone mineral content in excised rat humeri using fan beam dual-energy X-ray absorptiometry. Bone. 2002 Jan;30(1):243-6. https://doi.org/10.1016/s8756-3282(01)00641-x

Braillon PM, Salle BL, Brunet J, Glorieux FH, Delmas PD, Meunier PJ. Dual energy x-ray absorptiometry measurement of bone mineral content in newborns: validation of the technique. Pediatr Res. 1992 Jul;32(1):77-80. https://doi.org/10.1203/00006450-199207000-00015

El Maghraoui A, Achemlal L, Bezza A. Monitoring of dual-energy X-ray absorptiometry measurement in clinical practice. J Clin Densitom. 2006 Jul-Sep;9(3):281-6. https://doi.org/10.1016/j.jocd.2006.03.014

Publicado

2025-02-07

Como Citar

COSTA, T. A. C.; JESUS, A. C. de; OLIVEIRA, T. B. de; SILVA, A. R. S. da; FONTANA, C. A. P.; VULCANI, V. A. S. Desenvolvimento e avaliação de aplicativo móvel para determinação da densidade mineral em ossos secos de cães. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 26, 2025. DOI: 10.1590/1809-6891v26e-80154E. Disponível em: https://revistas.ufg.br/vet/article/view/80154. Acesso em: 27 mar. 2025.

Edição

Seção

MEDICINA VETERINÁRIA