Bacillus spp. na nutrição de aves de corte e suínos: uma revisão

Autores

Resumo

Este estudo teve como objetivo avaliar o uso de bactérias do gênero Bacillus como probióticos na alimentação de frangos e suínos, com foco na saúde intestinal, no desempenho produtivo e no manejo nutricional dos animais. Foi realizada uma revisão de literatura utilizando palavras-chave específicas em diversas bases de dados para reunir estudos relevantes sobre o tema. As espécies de Bacillus mais comumente usadas na nutrição de monogástricos, como aves e suínos, são B. subtilis e B. licheniformis, mas também há pesquisas sobre o uso de Bacillus em outras espécies, como peixes e bovinos. A maior parte dos estudos sobre o uso de Bacillus na alimentação animal ocorre em países como Estados Unidos, Brasil, China, e na Europa, com variações nos focos e na prevalência dependendo das necessidades regionais. Entre os principais benefícios associados ao uso de Bacillus na nutrição de monogástricos estão a melhoria na digestão de nutrientes, especialmente proteínas e fibras; o estímulo do sistema imunológico, que contribui para a resistência a doenças; a redução da colonização de patógenos no trato gastrointestinal, promovendo a saúde intestinal e a melhoria do desempenho produtivo, incluindo aumento do ganho de peso e melhor conversão alimentar. Os estudos sobre o uso de Bacillus na nutrição de monogástricos são conduzidos tanto em nível nacional quanto internacional, frequentemente por meio de colaborações entre instituições de pesquisa e empresas do setor agropecuário. Em conclusão, as cepas de Bacillus são uma abordagem promissora para otimizar o desempenho e a saúde de monogástricos na produção animal. 

Downloads

Não há dados estatísticos.

Referências

Anee IJ, Alam S, Begum RA, Shahjahan RM, Khandaker AM. The role of probiotics on animal health and nutrition. J Basic Appl Zool. 2021 [cited 2024 Jul 20];82(1):1-16. Available from: https://doi.org/10.1186/s41936-021-00250-x

Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ, Marouf R, Khelifi I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World. 2021 [cited 2024 Jul 20;14(2):319-328. Available from: http://dx.doi.org/10.14202/vetworld.2021.319-328

Markowiak P, Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018 [cited 2024 Jul 20];10(1):1-20. Available from: https://doi.org/10.1186/s13099-018-0250-0

Bhogoju S, Nahashon S. Recent advances in probiotic application in animal health and nutrition: a review. Agriculture. 2022 [cited 2024 Jul 20];12(2):1-16. Available from: https://doi.org/10.3390/agriculture12020304

Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 2017 [cited 2024 Jul 20];11(4):959-975. Available from: https://doi.org/10.1016/j.joi.2017.08.007

Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. Available from: https://doi.org/10.1007/s11192-009-0146-3

Hubert JJ. Linguistic indicators. Soc Indic Res. 1980;8(2):223-255. Available from: https://doi.org/10.1007/BF00286478

Aria M, Misuraca M, Spano M. Mapping the evolution of social research and data science on 30 years of Social Indicators Research. Soc Indic Res. 2020 [cited 2024 Jul 20];149(3):803-831. Available from: http://dx.doi.org/10.1007/s11205-020-02281-3

McCain RA. A linguistic conception of rationality. Soc Sci Inf. 1991 [cited 2024 Jul 20];30(2):233-255. Available from: http://dx.doi.org/10.1177/053901891030002002

Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F. An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J Informetr. 2011 [cited 2024 Jul 20];5(1):146-166. Available from: http://dx.doi.org/10.1016/j.joi.2010.10.002

Sen S. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res Vet Sci. 2012 [cited 2024 Jul 20];93(1):264-268. Available from: http://dx.doi.org/10.1016/j.rvsc.2011.05.021

Hernandez-Patlan D, Solis-Cruz B, Pontin KP, Hernandez-Velasco X, Merino-Guzman R, Adhikari B, et al. Impact of a Bacillus direct-fed microbial on growth performance, intestinal barrier integrity, necrotic enteritis lesions, and ileal microbiota in broiler chickens using a laboratory challenge model. Front Vet Sci. 2019 [cited 2024 Jul 20];6:108. Available from: http://dx.doi.org/10.3389/fvets.2019.00108

Whelan RA, Doranalli K, Rinttilä T, Vienola K, Jurgens G, Apajalahti J. The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge. Poult Sci. 2019 [cited 2024 Jul 20];98(9):3450-3463. Available from: http://dx.doi.org/10.3382/ps/pey500

Zhang B. Effects of Bacillus coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult Sci. 2021 [cited 2024 Jul 20];100(6):101168. Available from: http://dx.doi.org/10.1016/j.psj.2021.101168

Zhao Y. Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens–induced subclinical necrotic enteritis. Probiotics Antimicrob Proteins. 2020 [cited 2024 Jul 20];12:883-895. Available from: https://doi.org/10.1007/s12602-019-09597-8

Latorre JD. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet. Br Poult Sci. 2015 [cited 2024 Jul 20];56(6):723-732. Available from: http://dx.doi.org/10.1080/00071668.2015.1101053

Hayashi RM. Effect of feeding Bacillus subtilis spores to broilers challenged with Salmonella enterica serovar Heidelberg Brazilian Strain UFPR1 on performance, immune response, and gut health. Front Vet Sci. 2018 [cited 2024 Jul 20];5:1-12. Available from: http://dx.doi.org/10.3389/fvets.2018.00013

Yeh RH, Hsieh CW, Chen KL. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers. Poult Sci. 2018 [cited 2024 Jul 20];97(1):236-246. Available from: http://dx.doi.org/10.3382/ps/pex300

Lee SH, Ingale SL, Kim JS, Kim KH, Lokhande A, Kim EK, et al. Effects of dietary supplementation with Bacillus subtilis LS 1–2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Anim Feed Sci Technol. 2014 [cited 2024 Jul 20];188:102-110. Available from: https://doi.org/10.1016/j.anifeedsci.2013.12.001

Zani JL, Cruz FW da, Santos AF dos, Gil-Turnes C. Effect of probiotic CenBiot on the control of diarrhoea and feed efficiency in pigs. J Appl Microbiol. 1998 [cited 2024 Jul 20];84:68-71. Disponível em: https://doi.org/10.1046/j.1365-2672.1997.00309.x

Li HH, Jiang XR, Qiao JY. Effect of dietary Bacillus subtilis on growth performance and serum biochemical and immune indexes in weaned piglets. J Appl Anim Res. 2021 [cited 2024 Jul 20];49(1):83-88. Available from: https://doi.org/10.1080/09712119.2021.1877717

Peet-Schwering CMC van der, Verheijen R, Jørgensen L, Raff L. Effects of a mixture of Bacillus amyloliquefaciens and Bacillus subtilis on the performance of growing-finishing pigs. Anim Feed Sci Technol. 2020 [cited 2024 Jul 20];261(114409). Available from: http://dx.doi.org/10.1016/j.anifeedsci.2020.114409

Ding H. Dietary supplementation with Bacillus subtilis DSM 32315 alters the intestinal microbiota and metabolites in weaned piglets. J Appl Microbiol. 2021 [cited 2024 Jul 20];130(1):217-232. Available from: https://doi.org/10.1111/jam.14767

Jia R, Sadiq FA, Liu W, Cao L, Shen Z. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissue residues of weaned piglets fed deoxynivalenol contaminated diets. Food Chem Toxicol. 2021 [cited 2024 Jul 20];148:111962. Available from: http://dx.doi.org/10.1016/j.fct.2020.111962

Ji J, Hu S, Zheng M, Du W, Shang Q, Li W. Bacillus amyloliquefaciens SC06 inhibits ETEC-induced pro-inflammatory responses by suppression of MAPK signaling pathways in IPEC-1 cells and diarrhea in weaned piglets. Livest Sci. 2013 [cited 2024 Jul 20];158(1-3):206-214. Available from: http://dx.doi.org/10.1016/j.livsci.2013.09.017

Huang HJ, Weng BC, Hsuuw YD, Lee YS, Chen KL. Dietary supplementation of two-stage fermented feather-soybean meal product on growth performance and immunity in finishing pigs. Animals. 2021 [cited 2024 Jul 20];11(6):1527. Available from: http://dx.doi.org/10.3390/ani11061527

Latorre JD, Hernandez-Velasco X, Vicente JL, Wolfenden R, Hargis BM, Tellez G. Effects of the inclusion of a Bacillus direct-fed microbial on performance parameters, meat quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles. Poult Sci. 2017 [cited 2024 Jul 20];96(8):2728-2735. Available from: http://dx.doi.org/10.3382/ps/pex082

Kim J, Bayo J, Cha J, Choi YJ, Jung MY, Kim D, et al. Investigating the probiotic characteristics of four microbial strains with potential application in feed industry. PLoS One. 2019 [cited 2024 Jul 20];14(6). Available from: http://dx.doi.org/10.1371/journal.pone.0218922

Soares MB. Behavior of different Bacillus strains with claimed probiotic properties throughout processed cheese (“requeijão cremoso”) manufacturing and storage. Int J Food Microbiol. 2019 [cited 2024 Jul 20];307. Available from: http://dx.doi.org/10.1016/j.ijfoodmicro.2019.108288

Dutta D, Ghosh K. Screening of extracellular enzyme-producing and pathogen inhibitory gut bacteria as putative probiotics in mrigal, Cirrhinus mrigala (Hamilton, 1822). Int J Fish Aquat Stud. 2015;2(4):310-318.

Bahaddad SA, Almalki MH, Alghamdi OA, Sohrab SS, Yasir M, Azhar EI, et al. Bacillus species as direct-fed microbial antibiotic alternatives for monogastric production. Probiotics Antimicrob Proteins. 2023 [cited 2024 Jul 20];15(1):1-16. Available from: https://doi.org/10.1007/s12602-022-09909-5

Latorre JD. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front Vet Sci. 2016 [cited 2024 Jul 20];3:1-2. Available from: http://dx.doi.org/10.3389/fvets.2016.00095

Wan MLY, Forsythe SJ, El-Nezami H. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr. 2018 [cited 2024 Jul 20];59(20):3320-3333. Available from: http://dx.doi.org/10.1080/10408398.2018.1490885

Ruiz Sella SRB, Bueno T, Oliveira AAB de, Karp SG, Soccol CR. Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit Rev Biotechnol. 2021 [cited 2024 Jul 20];41(3):355-369. Available from: http://dx.doi.org/10.1080/07388551.2020.1858019

Publicado

2025-06-03

Como Citar

CONCEIÇÃO, J. S.; CARVALHO, A. S.; SANTOS, L. C.; PEREIRA, E.; MELO, M.; BARRETO, N. S. E. Bacillus spp. na nutrição de aves de corte e suínos: uma revisão. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 26, 2025. Disponível em: https://revistas.ufg.br/vet/article/view/80036. Acesso em: 23 jun. 2025.

Edição

Seção

ZOOTECNIA