Influência do nitrato de prata nas propriedades mecânicas do cimento ósseo ortopédico e atividade antibacteriana in vitro

Autores

Resumo

O objetivo do estudo foi avaliar a influência do nitrato de prata (AgNO3) nas propriedades mecânicas do cimento ósseo de polimetilmetacrilato (PMMA), por meio de testes estáticos, bem como a atividade antibacteriana in vitro. Foram constituídos dois grupos: Grupo 1 – controle (n=10), Grupo 2 – cimento acrescido de nitrato de prata (n=10). No Grupo 1 o cimento foi preparado manualmente usando 20 g de pó de PMMA. No Grupo 2 o cimento foi preparado como no Grupo 1, a diferença foi que 0,25 g de nitrato de prata foi adicionado a 20 g de pó de PMMA. Dez corpos de prova de cada grupo foram designados para o ensaio de flexão em quatro pontos e 10 para o ensaio de compressão. Não foram observadas diferenças estatísticas para a resistência à flexão com (61,80 ± 4,96 MPa) ou sem nitrato de prata (60,20 ± 5,88 MPa). Diferenças estatísticas foram verificadas na resistência à compressão, sendo maior para os corpos de prova controle (78,60 ± 3,20 MPa) comparado ao nitrato de prata (74,20 ± 1,61 MPa). Amostras dos produtos foram analisadas pelo teste de sensibilidade antimicrobiana, porém não foi verificado efeito com relação ao Staphylococcus aureus, Streptococcus sp., Pseudomonas aeruginosa e Escherichia coli. Conclui-se que na concentração empregada, o nitrato de prata não alterou as propriedades mecânicas do cimento ósseo de PMMA no teste de flexão, porém influenciou negativamente no teste de compressão. Além disso, o produto não permitiu a redução da carga bacteriana no teste in vitro.

 

 

 

Downloads

Referências

Webb JC, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. The Journal of Bone and Joint Surgery. British volume. 2007; 89(7):851–857. https://doi.org/10.1302/0301-620X.89B7.19148

Magnan B, Bondi M, Maluta T, Samaila E, Schirru L, Dall'Oca C. Acrylic bone cement: current concept review. Musculoskeletal Surgery. 2013; 97(2):93–100. https://doi.org/10.1007/s12306-013-0293-9

Cavalu S. Acrylic bone cements: new insight and future perspective. Key Engineering Materials. 2017; 745:39-49. https://doi.org/10.4028/www.scientific.net/KEM.745.39

van Vugt TAG, Arts JJ, Geurts JAP. Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Frontiers in Microbiology. 2019; 10:1626. https://doi.org/10.3389/fmicb.2019.01626

Hayes G, Moens N, Gibson T. A review of local antibiotic implants and applications to veterinary orthopaedic surgery. Veterinary and Comparative Orthopaedics and Traumatology. 2013; 26(4):251–259. https://doi.org/10.3415/VCOT-12-05-0065

Walker LC, Baker P, Holleyman R, Deehan D. Microbial resistance related to antibiotic-loaded bone cement: a historical review. Knee Surgery, Sports Traumatology, Arthroscopy. 2017; 25(12):3808–3817. https://doi.org/10.1007/s00167-016-4309-5

Schwarz EM, McLaren AC, Sculco TP, Brause B, Bostrom M, Kates SL, Parvizi J, Alt V, Arnold WV, Carli A, Chen AF, Choe H, Coraça-Huber DC, Cross M, Ghert M, Hickok N, Jennings JA, Joshi M, Metsemakers WJ, Ninomiya M, Nishitani K, Oh I, Padgett D, Ricciardi B, Saeed K, Sendi P, Springer B, Stoodley P, Wenke JC; Hospital for Special Surgery. Biofilm Symposium Workgroup. Adjuvant antibiotic-loaded bone cement: Concerns with current use and research to make it work. Journal of Orthopaedic Research. 2021; 39(2):227–239. https://doi.org/10.1002/jor.24616

Lewis G. Antibiotic-free antimicrobial poly (methyl methacrylate) bone cements: A state-of-the-art review. World Journal of Orthopedics. 2022; 13(4):339–353. https://doi.org/10.5312/wjo.v13.i4.339

Brennan SA, Ní Fhoghlú C, Devitt BM, O'Mahony FJ, Brabazon D, Walsh A.Silver nanoparticles and their orthopaedic applications. The Bone & Joint Journal. 2015; 97-B(5):582–589. https://doi.org/10.1302/0301-620X.97B5.33336

Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che Abdullah CA, Ahmad SA. Synthesis, characterization and biomedical application of silver nanoparticles. Materials (Basel). 2022; 15(2):427. https://doi.org/10.3390/ma15020427

Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology. 2010; 28(11):580–588. https://doi.org/10.1016/j.tibtech.2010.07.006

Lewis G. Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review. Journal of Biomedical Materials Research. 2017; 105(5):1260–1284. https://doi.org/10.1002/jbm.b.33643

Saha S, Pal S. Mechanical properties of bone cement: a review. Journal of Biomedical Materials Research. 1984; 18(4):435–462. https://doi.org/10.1002/jbm.820180411

Wang J-S, Dunne N. Bone cement fixation: acrylic cements. In: Revell PA, ed. Joint Replacement Technology. United Kingdom: Woodhead Publishing; 2008. p. 212-51.

Ficklin MG, Kunkel KA, Suber JT, Gerard PD, Kowaleski MP. Biomechanical evaluation of polymethyl methacrylate with the addition of various doses of cefazolin, vancomycin, gentamicin, and silver microparticles. Veterinary and Comparative Orthopaedics and Traumatology. 2016; 29(5):394–401. https://doi.org/10.3415/VCOT-16-01-0005

Slane J, Vivanco J, Rose W, Ploeg HL, Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science & Engineering. 2015; 48:188–196. https://doi.org/10.1016/j.msec.2014.11.068

Alsukhayri AA, Alwagdani AA, Ibrahim MI, Fahmi MK. (2019). Effect of silver nanoparticles fillers addition on flexural strength, fracture toughness, impact strength, compressive strength and hardness of heat-polymerized acrylic resin. International Journal of Advanced Research. 2019; 7(9):1419-1422. http://dx.doi.org/10.21474/IJAR01/9798

Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004; 25(18):4383–4391. https://doi.org/10.1016/j.biomaterials.2003.10.078

Oei JD, Zhao WW, Chu L, DeSilva MN, Ghimire A, Rawls HR, Whang K. Antimicrobial acrylic materials with in situ generated silver nanoparticles. Journal of Biomedical Materials Research. 2012; 100(2):409–415. https://doi.org/10.1002/jbm.b.31963

Sodagar A, Kassaee MZ, Akhavan A, Javadi N, Arab S, Kharazifard MJ. Effect of silver nano particles on flexural strength of acrylic resins. Journal of Pprosthodontic Research. 2012: 56(2):120–124. https://doi.org/10.1016/j.jpor.2011.06.002

Prokopovich P, Leech R, Carmalt CJ, Parkin IP, Perni S. A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. International Journal of Nanomedicine. 2013; 8:2227–2237. https://doi.org/10.2147/IJN.S42822

Prokopovich P, Köbrick M, Brousseau E, Perni S. (2015). Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid. Journal of Biomedical Materials Research. 2015; 103(2):273–281. https://doi.org/10.1002/jbm.b.33196

Ghaffari T, Hamedirad F, Ezzati B. In vitro comparison of compressive and tensile strengths of acrylic resins reinforced by silver nanoparticles at 2% and 0.2% concentrations. Journal of Dental Research, Dental Clinics, Dental Prospects. 2014; 8(4):204–209. https://doi.org/10.5681/joddd.2014.037

Clement JL, Jarrett PS. Antibacterial silver. Metal-based Drugs. 1994; 1(5-6):467–482. https://doi.org/10.1155/MBD.1994.467

Braga NB, Pires LCSR, Oliveira HP, Costa MM. 2018. Antimicrobial and antibiofilm activity of silver nanoparticles against Aeromonas spp. isolated from aquatic organisms. Pesquisa Veterinária Brasileira. 2018; 38(2):244-249. https://doi.org/10.1590/1678-5150-PVB-4805

Jackson J, Lo J, Hsu E, Burt HM, Shademani A, Lange D. The combined use of gentamicin and silver nitrate in bone cement for a synergistic and extended antibiotic action against gram-positive and gram-negative bacteria. Materials (Basel). 2021; 14(12):3413. https://doi.org/10.3390/ma14123413

Publicado

2025-02-13

Como Citar

OSOWSKI, A.; RAHAL, S. C.; RIBEIRO, C. R.; JUNIOR, L. D. . C.; JÚNIOR, J. I. . de S. S.; CASSANEGO, G. R.; GASPAROTTO, P. H. . G. Influência do nitrato de prata nas propriedades mecânicas do cimento ósseo ortopédico e atividade antibacteriana in vitro. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 26, 2025. Disponível em: https://revistas.ufg.br/vet/article/view/79814. Acesso em: 27 mar. 2025.

Edição

Seção

MEDICINA VETERINÁRIA