Análise da eficiência energética em fazendas leiteiras da Colômbia com diferentes níveis de intensificação

Autores

Resumo

O uso de insumos (input), incluindo energia proveniente de combustíveis fósseis, e, consequentemente, o consumo energético e a eficiência energética, são altamente variáveis em fazendas leiteiras especializadas. Com base no uso de insumos e na produtividade, 25 fazendas leiteiras foram classificadas em três níveis de intensificação: alta, média e baixa (oito, oito e nove propriedades, respectivamente), e seus consumos e eficiências energéticas foram quantificados. O consumo direto de energia (mJ ha⁻¹ ano⁻¹), predominantemente devido ao uso de eletricidade, foi maior nas fazendas de alta (10.778) e média (7.990) intensificação em comparação com as de baixa intensificação (4.645; P < 0,05). O consumo indireto de energia (% do consumo total) esteve principalmente associado à suplementação alimentar (45%, 41% e 36%) e à adubação (43%, 40% e 46%) nas fazendas de alta, média e baixa intensificação, respectivamente. A saída de energia (output), ou seja, a energia contida no leite e/ou na carne, foi majoritariamente atribuída à produção de leite (97,1%, 96,0% e 96,7% da produção total de energia para as fazendas de alta, média e baixa intensificação, respectivamente). As fazendas de média intensificação apresentaram a maior eficiência energética (relação saída/entrada = 0,72) em comparação com as fazendas de alta e baixa intensificação (0,55 e 0,59, respectivamente, P < 0,05). Além disso, em todos os níveis de intensificação, à medida que o uso de insumos aumentava, a eficiência energética tendia a ser menor (P < 0,05). Para aumentar a retenção de energia nos produtos de origem animal, é fundamental garantir um manejo técnico adequado dos sistemas produtivos e um uso equilibrado dos insumos.

Downloads

Referências

Energy Institute. Statistical Review of World Energy [Internet]. 2023 [cited 2024 Jun 18]. Available from: https://www.energyinst.org/statistical-review

L. Gustavsson, J. Holmberg, V. Dornburg, R. Sathre, T. Eggers, K. Mahapatra, G. Marland, Using biomass for climate change mitigation and oil use reduction, Energy Policy, Volume 35, Issue 11, 2007, Pages 5671-5691, ISSN 0301-4215, https://doi.org/10.1016/j.enpol.2007.05.023

Fluck RC. Energy in Farm Production [Internet]. Google Books. Elsevier; 2012 [cited 2024 Jun 18]. Book ISBN: 9780444597816. Available from: https://shop.elsevier.com/books/energy-in-farm-production/fluck/978-0-444-88681-1

Kwilinski A, Dobrovolska 0, Wołowiec T, Cwynar W, Didenko I, Artyukhov A, et al. Carbon Dioxide, Nitrous Oxide, and Methane: What Types of Greenhouse Gases Are Most Affected by Green Investments and Renewable Energy Development? Energies. 2024 Feb 7;17(4):804–4. https://doi.org/10.3390/en17040804

Murgueitio Restrepo E, Barahona Rosales R, Flores Estrada MX, Chará Orozco JD, Rivera Herrera JE. Es Posible Enfrentar el Cambio Climático y Producir más Leche y Carne con Sistemas Silvopastoriles Intensivos. Ceiba. 2016 Aug 3;54(1):23–30. https://doi.org/10.5377/ceiba.v54i1.2774

Zarei S, Bozorg-Haddad O, Singh VP, Loáiciga HA. Developing water, energy, and food sustainability performance indicators for agricultural systems. Scientific Reports. 2021 Nov 24;11(1). https://doi.org/10.1038/s41598-021-02147-9

Pimentel D. Handbook of Energy Utilization In Agriculture. CRC Press; 2019. https://doi.org/10.1201/9781351072519

Vigne M, Vayssières J, Lecomte P, Peyraud JL. Evaluating the ability of current energy use assessment methods to study contrasting livestock production systems. Journal of Environmental Management. 2012 Dec;112:199– 212. https://doi.org/10.1016/j.jenvman.2012.07.017

National Research Council. Nutrient requirements of dairy cattle. Washington National Academy Press; 2001. https://doi.org/10.17226/9825

Fluck RC, Baird C D. Agricultural Energetics. A V I Publishing Company; 1980.

Dalgaard T, Halberg N, Porter JR. A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems & Environment. 2001 Oct;87(1):51–65. https://doi.org/10.1016/S0167-8809(00)00297-8

Hülsbergen KJ ., Feil B, Biermann S, Rathke GW ., Kalk WD ., Diepenbrock W. A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems & Environment [Internet]. 2001 Sep 1 [cited 2022 Apr 5];86(3):303–21. Available from: https://doi.org/10.1016/S0167-8809(00)00286-3

Leach G. Energy and food production. Guildford, Surrey, UK: IPC Science and Technology Press Ltd.; 1976.

O. Kitani. CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 1 Natural Energy and Biomass, Part 1.3 Biomass Resources. 1999 Jan 1; https://doi.org/10.13031/2013.36411

Gezer I, Acaraglu M, Haciseferoǧullari H. Use of energy and labour in apricot agriculture in Turkey. Biomass and Bioenergy. 2003 Mar;24(3):215–9. https://doi.org/10.1016/S0961-9534(02)00116-2

Gliessman SR, Engles E, Krieger R. Agroecology: ecological processes in sustainable agriculture. Boca Raton: Lewis Publishers; 2000.

De Haan MHA, Feikema W. Energiegebruik lagekostenbedrijf [Internet]. Wageningen University. Wageningen, Netherlands: Wageningen University; 2001. Available from: https://edepot.wur.nl/34455

Ceccon P, Coiutti C, Giovanardi R. Energy balance of four farming systems in north-eastern Italy. Italian Journal of Agronomy. 2002;6(1):73–83. http://hdl.handle.net/11390/710890

Binning AS, Pathak BS, Panesar V. The energy audit of crop production system research report. School of energy studies for agriculture. Ludhiana, Panjab (India): Panjab Agricultural University; 2004.

Özkan B, Akcaoz H, Karadeniz F. Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management. 2004 Jul 1;45(11-12):1821–30. https://doi.org/10.1016/j.enconman.2003.10.002

Canakci M, Topakci M, Akinci I, Ozmerzi A. Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management. 2005 Mar;46(4):655–66. https://doi.org/10.1016/j.enconman.2004.04.008

Soto C, Valencia A, Galvis RD, correa HJ. Efecto de la edad de corte y del nivel de fertilización nitrogenada sobre el valor energético y proteico del pasto kikuyo (Pennisetum clandestinum). Revista Colombiana de Ciencias Pecuarias. 2005;18(1):17–26. https://www.redalyc.org/pdf/2950/295022952003.pdf

Urban D. Efecto de la fertilización nitrogenada sobre el rendimiento y calidad de tres gramíneas tropicales. Revista de la Facultad de Agronomia (LUZ). 1997;14(1):129–39. https://produccioncientificaluz.org/index.php/ agronomia/article/view/26125

Caro F, Correa HJ. Post-ruminal apparent digestibility of the dry matter, crude protein and four macrominerals of kikuyu grass (Pennisetum clandestinum) harvested at two cutting intervals [Internet]. www.lrrd.org. 2006 [cited 2024 Jun 18]. Available from: http://www.lrrd.org/lrrd18/10/caro18143.htm

Murgueitio E, Barahona R, Chará JD, Flores MX, Mauricio RM, Molina JJ. The intensive silvopastoral systems in Latin America sustainable alternative to face climatic change in animal husbandry. Cuban Journal of Agricultural Science [Internet]. 2015 [cited 2024 Jun 18];49(4). Available from: https://cjascience.com/index.php/CJAS/ article/view/500

Cederberg C, Mattsson B. Life cycle assessment of milk production — a comparison of conventional and organic farming. Journal of Cleaner Production. 2000 Feb;8(1):49–60. https://doi.org/10.1016/S0959-6526(99)00311-X

Llanos E, Astigarraga L, Jacques R, Picasso V. Eficiencia energética en sistemas lecheros del Uruguay. Agrociencia (Uruguay) [Internet]. 2013 Dec 1 [cited 2024 Jun 18];17(2):99–109. Available from: http://www.scielo.edu.uy/scielo.php?pid=S2301-15482013000200011&script=sci_abstract&tlng=pt

Risoud B. Développement durable et analyse énergétique d’exploitations agricoles. Économie rurale [Internet]. 1999 [cited 2024 Jun 18];252(1):16–27. Available from: https://www.persee.fr/doc/ecoru_0013-0559_1999_num_252_1_5096

Le Gall A, Beguin E, Dolle JB ., Manneville V, Pflimlin A. Nouveaux compromis techniques pour concilier efficacité économique et environnementale en élevage herbivore [Internet]. pascal-francis.inist.fr. 2009 [cited 2024 Jun 18]. p. 131–51. Available from: https://abiodoc.docressources.fr/doc_num.php?explnum_id=1296

Denoia J, B. Bonel, S. Montico, N. Di Leo. Análisis de la Gestión Energética en Sistemas de Producción Ganaderos. Revista FAVE - Ciencias Agrarias [Internet]. 2008 [cited 2024 Jun 18];7:1–2. https://doi.org/10.14409/fa.v7i1/2.1327

Cuartas Cardona CA, Naranjo Ramírez JF, Tarazona Morales AM, Correa Londoño GA, R Barahona Rosales. Dry matter and nutrient intake and diet composition in Leucaena leucocephala based intensive silvopastoral systems. Tropical and subtropical agroecosystems [Internet]. 2015 Dec 17 [cited 2024 Jun 19];18(3):303–11. Available from: http://dx.doi.org/10.56369/tsaes.2125

Gaviria-Uribe X, Naranjo-Ramírez JF, Bolívar-Vergara DM, Barahona-Rosales R. Consumo y digestibilidad en novillos cebuínos en un sistema silvopastoril intensivo. Archivos de Zootecnia. 2015 Mar 16;64(245):21–7. https://doi.org/10.21071/az.v64i245.370

Sossa Sánchez CP, Correa Londoño GA, Barahona Rosales R. Consumo y excreción de nutrientes en novillos de carne pastoreando en trópico de altura con y sin suplementación energética. Zootecnia Tropical [Internet]. 2015 Jun 30 [cited 2024 Jun 19];33(2):117–28. Available from: https://www.researchgate.net/publication/289505253_Consumo_y_excrecion_de_nutrientes_en_novillos_de_carne_pastoreando_en_tropico_de_altura_con_y_sin_suplementacion_energetica

Cuartas CA, Naranjo JF, Tarazona AM, Murgueitio E, Chará JD, Ku J, Solorio FJ, X Flores MX, Solorio B, Barahona R. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change. Rev Colomb Cienc Pecu 2014; 27:76-94. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902014000200003#0

FAO. Pathways towards lower emissions. FAO eBooks. 2023 Dec 8. https://doi.org/10.4060/cc9029en

Pimentel D, Hurd LE, Bellotti AC, Forster MJ, Oka IN, Sholes OD, Whitman RJ. Food production and the energy crisis. Science. 1973 Nov 2;182(4111):443-9. doi: https://doi.org/10.1126/science.182.4111.443

Pimentel D, Pimentel M. Food, energy, and society. 3rd edition. Boca Raton, FL: CRC Press; 2007.

Downloads

Publicado

2025-04-10

Como Citar

PATIÑO, L. M. B.; BOLÍVAR-VERGARA, D. M.; ROSALES, R. B. Análise da eficiência energética em fazendas leiteiras da Colômbia com diferentes níveis de intensificação. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 26, 2025. Disponível em: https://revistas.ufg.br/vet/article/view/79736. Acesso em: 18 abr. 2025.

Edição

Seção

ZOOTECNIA