Ciclagem de nitrogênio, fósforo e potássio em ecossistemas de pastagem
DOI:
https://doi.org/10.1590/1809-6891v25e-76743EResumo
Práticas inadequadas de manejo são os principais fatores que podem causar a degradação das pastagens, e um dos fatores chaves é entender a ciclagem de nutrientes nos ecossistemas de pastagem. Esta revisão teve como objetivo descrever os processos de ciclagem de nutrientes importantes em ecossistemas de pastagem (nitrogênio, fósforo e potássio), analisando as interações entre os componentes solo-planta-animal. Verificou-se que o uso de espécies de leguminosas forrageiras consorciadas com gramíneas é uma estratégia para aumentar o teor de nitrogênio no solo, minimizando os custos com adubação nitrogenada em pastagens campestres. Estrume e resíduos vegetais são as principais fontes orgânicas de fósforo e potássio. As perdas de nitrogênio nas pastagens ocorrem principalmente por lixiviação, escoamento superficial e volatilização. A adição de fósforo ao solo deve ser feita com cautela, pois há um aumento nas perdas de fósforo com o aumento de seu acúmulo no solo. O fósforo é muitas vezes devolvido ao solo longe do local onde foi consumido, de modo que a transferência de estoque representa uma perda nos ecossistemas de pastagem que pode representar aproximadamente 5% das entradas de fertilizantes fosfatados. As perdas de potássio ocorrem principalmente por lixiviação e escoamento superficial. A melhoria das práticas de manejo é essencial para uma ciclagem equilibrada de nutrientes em ecossistemas de pastagem.
Downloads
Referências
Powers JS, Marín-Spiotta E. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Rev Ecol Evol Syst. 2017;48:497-519. Doi: http://doi.org/10.1146/annurev-ecolsys-110316-022944
Lu M, Hedin LO. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat Ecol Evol. 2019;3:239-250. Doi: http://doi.org/10.1038/s41559-018-0759-0
Souza MS, Jardim AMRF, Júnior GNA, Silva JRL, Leite MLMV, Teixeira VI, Silva TGF. Ciclagem de nutrientes em ecossistemas de pastagens tropicais. Pubvet, 2018;12:1-9. Doi: http://doi.org/10.22256/pubvet.v12n5a91.1-9
Dubeux Jr JCB, Sollenberger LE. Nutrient cycling in grazed pastures (Chapter 4). In: Rouquette Jr. M, Aiken GE (Eds.). Management strategies for sustainable cattle production in southern pastures. Cambridge, Massachusetts, EUA: Academic Press; 2020. p. 59-75. https://doi.org/10.1016/B978-0-12-814474-9.00004-9
Zhang X, Davidson EA, Zou T, Lassaletta L, Quan Z, Li T, Zhang W. Quantifying nutrient budgets for sustainable nutrient management. Global Biogeochem. Cycles. 2021;34:e2018GB006060. Doi: http://doi.org/10.1029/2018GB006060
Souza RD, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Gen Mol Biol. 2015;38:401-419. Doi: http://doi.org/10.1590/S1415-475738420150053
Divito GA, Sadras VO. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res. 2014;156:161-171. Doi: http://doi.org/10.1016/j.fcr.2013.11.004
Hasanuzzaman M, Bhuyan MB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Moumita, Fujita M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agron. 2018;8:1-29. Doi: https://doi.org/10.3390/agronomy8030031
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. J Int Plant Biol. 2021;63:34-52. Doi: http://doi.org/10.1111/jipb.13053.
Lambers H. Phosphorus acquisition and utilization in plants. Annual Rev Plant Biol. 2022; 73:17-42. Doi: http://doi.org/10.1146/annurev-arplant-102720-125738
Vendramini JM, Dubeux Jr JC, Silveira ML. Nutrient cycling in tropical pasture ecosystems. Rev Bras Ci Agr. 2014;9:308-315. Doi: http://doi.org/10.5039/agraria.v9i2a3730.
Gimenes FMA, Barbosa HZ, Gerdes L, Giacomini AA, Batista K, Mattos WT, Premazzi LMN, Miguel, ANV. The utilization of tropical legumes to provide nitrogen to pastures: A review. Afr J Agric Res. 2017;12:85-92. Doi: http://doi.org/10.5897/AJAR2016.11893
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. J Plant Physiol. 2022;276:e153765. Doi: http://doi.org/10.1016/j.jplph.2022.153765
Miranda KRD, Dubeux JCB, Mello ACLD, Silva MDC, Santos MVFD, Santos DCD. Forage production and mineral composition of cactus intercropped with legumes and fertilized with different sources of manure. Ci Rural. 2019;49:e20180324. Doi: http://doi.org/10.1590/0103-8478cr20180324
Mahmud K, Makaju S, Ibrahim R, Missaoui A. 2020. Current progress in nitrogen fixing plants and microbiome research. Plants. 2020;9:1-17. Doi: http://doi.org/10.3390/plants9010097
Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, Kouisni L. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants. 2020;9:e1011. Doi: http://doi.org/10.3390/plants9081011
Camelo D, Dubeux Jr JCB, Santos MVF, Lira Jr MA, Fracetto GGM, Fracetto FJC, Cunha MV, Freitas EV. Soil microbial activity and biomass in semiarid agroforestry systems integrating forage cactus and tree legumes. Agron. 2021;11:e1558. Doi: http://doi.org/10.3390/agronomy11081558
Xu R, Shi W, Kamran M, Chang S, Jia Q, Hou F Grass-legume mixture and nitrogen application improve yield, quality, and water and nitrogen utilization efficiency of grazed pastures in the loess plateau. Front. Plant Sci. 2023;14:1088849. Doi: http://doi.org/110.3389/fpls.2023.1088849
Silva AB, Lira Junior MA, Dubeux Junior JCB, Figueiredo MDVB, Vicentin RP. Estoque de serapilheira e fertilidade do solo em pastagem degradada de Brachiaria decumbens após implantação de leguminosas arbustivas e arbóreas forrageiras. Rev Bras Ci Solo. 2013;37:502-511. Doi: http://doi.org/10.1590/S0100-06832013000200021
Teixeira RA, Soares TG, Fernandes AR, Braz AMDS. 2014. Grasses and legumes as cover crop in no-tillage system in northeastern Pará Brazil. Acta Amazon. 2014;44:411-418. Doi: http://doi.org/10.1590/1809-4392201305364
Oli PS, Mandal TN, Adhikari U. Effect of leaf litter treatment on soil microbial biomass. Open J Soil Sci. 2018;8:175-185. Doi: http://doi.org/10.4236/ojss.2018.88014
Dablin L, Lewis SL, Milliken W, Monro A, Lee MA. Browse from three tree legumes increases forage production for cattle in a silvopastoral system in the Southwest Amazon. Anim. 2021;11:e3585. Doi: https://doi.org/10.3390/ani11123585
Xavier DF, Lédo FJDS, Paciullo DSDC, Pires MDF, Boddey RM. Dinâmica da serapilheira em pastagens de braquiária em sistema silvipastoril e monocultura. Pesq Agropec Bras. 2011;46:1214-1219. Doi: http://doi.org/10.1590/S0100-204X2011001000014
Herrera AM, Mello ACL, Apolinario VXDO, Dubeux Jr JCB, Silva VJ, Santos MVF, Cunha MV. Decomposition of senescent leaves of signalgrass (Urochloa decumbens Stapf. R. Webster) and arboreal legumes in silvopastoral systems. Agrof Syst. 2020;94:2213-2224. Doi: http://doi.org/10.1007/s10457-020-00542-1
Lira Junior MA, Fracetto FJC, Ferreira JS, Silva MB, Fracetto GGM. Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Cat. 2020;189:e104508. Doi: http://doi.org/10.1016/j.catena.2020.104508
Miranda Costa SB, Mello ACL, Dubeux Jr JCB, Santos MVF, Cunha MV, Coelho JJ. Proportion and digestibility of tree legumes in diets of grazing cattle in a tropical silvopastoral system. Liv Sci. 2021;252:e104689. Doi: http://doi.org/10.1016/j.livsci.2021.104689
Carneiro WJDO, Silva CA, Muniz JA, Savian TV. Mineralização de nitrogênio em Latossolos adubados com resíduos orgânicos. Rev Bras Ci Solo. 2013;37:715-725. Doi: http://doi.org/10.1590/S0100-06832013000300018
Maluf HJGM, Soares EMB, Silva IR, Neves JCL, Silva LOG. Decomposição de resíduos de culturas e mineralização de nutrientes em solo com diferentes texturas. Rev Bras Ci Solo. 2015;39:1681-9. Doi: https://doi.org/10.1590/01000683rbcs20140657
Bento CB, Brandani CB, Filoso S, Martinelli LA, Carmo JB. Effects of extensive-to-intensive pasture conversion on soil nitrogen availability and CO2 and N2O fluxes in a Brazilian oxisol. Agric Ecosys Env. 2021;321:e107633. Doi: http://doi.org/10.1016/j.agee.2021.107633
Touhami D, McDowell RW, Condron LM, Bouray M. Nitrogen fertilization effects on soil phosphorus dynamics under a grass-pasture system. Nut Cycl Agroecos. 2022;124:227–246. Doi: http://doi.org/10.1007/s10705-021-10191-0
Basosi R, Spinelli D, Fierro A, Jez S. Mineral nitrogen fertilizers: environmental impact of production and use (Chapter 1). In: Lòpez-Valdez F, Luqueno FF (Eds.). Fertilizers: Components, uses in agriculture and environmental impacts. 1st ed. Hauppauge, Nova York, EUA: NOVA Science Publishers; 2014. p. 3-43.
Qiao C, Liu L, Hu S, Compton JE, Greaver TL, Li Q. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biol. 2015;21:1249-1257. Doi: http://doi.org/10.1111/gcb.12802.
Wang J, Chadwick D., Cheng Y, Yan X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci Total Env. 2018;616:908-917. Doi: http://doi.org/10.1016/j.scitotenv.2017.10.229
Apolinário VX, Dubeux Jr JC, Mello AC, Vendramini JM, Lira MA, Santos MV, Muir JP. Litter decomposition of signal grass grazed with different stocking rates and nitrogen fertilizer levels. Agron J. 2014;106:622-627. Doi: http://doi.org/10.2134/agronj2013.0496
Gupta KK, Aneja KR, Rana D. Current status of cow dung as a bioresource for sustainable development. Biores Bioproc. 2016;3:1-11. Doi: http://doi.org/10.1186/s40643-016-0105-9
Chadwick DR, Cardenas LM, Dhanoa MS, Donovan N, Misselbrook T, Williams JR, Thorman RE, McGeough KL, Watson CJ, Bell M, Anthony SG, Rees RM. The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Sci Total Env. 2018;635:607-617. Doi: http://doi.org/10.1016/j.scitotenv.2018.04.152
Nguyen TT, Sasaki Y, Aizawa M, Kakuda KI, Fujii H, Cheng W. On-farm assessment of the phosphorus balance of paddy soil fertilized with cow dung compost in mixed crop–livestock systems and with rice straw in conventional practice in Yamagata, Japan. Soil Sci Plant Nut. 2021;67:566-575. Doi: http://doi.org/10.1080/00380768.2021.1963638
Dubeux Jr JCB, Sollenberger LE, Vendramini JMB, Interrante SM, Lira Jr, MA. Stocking method, animal behavior, and soil nutrient redistribution: how are they linked? Crop Sci. 2014;54:2341-2350. Doi: http://doi.org/10.2135/cropsci2014.01.0076
Melesse A, Steingass H, Schollenberger M, Rodehutscord M. 2017. Screening of common tropical grass and legume forages in Ethiopia for their nutrient composition and methane production profile in vitro. Trop Grassl-Forr Trop. 2017;5:163-175. Doi: http://doi.org/10.17138/tgft(5)163-175
Fagodiya RK, Kumar A, Kumari S, Medhi K, Shabnam AA. 2020. Role of nitrogen and its agricultural management in changing environment. In: Naeem M, Ansari AA, Gill SS. (Eds.). Contaminants in Agriculture: Sources, Impacts and Management. Springer Nature; 2020. p. 247-270. Doi: https://doi.org/10.1007/978-3-030-41552-5_12
Dubey RS, Srivastava RK, Pessarakli M. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Mohammad Pessarakli M. (Ed.). Handbook of plant and crop physiology. 4th ed. New York: CRC Press; 2021. p. 579-616. https://doi.org/10.1201/9781003093640
Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L. A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol. 2019;33:540-552. Doi: http://doi.org/10.1111/1365-2435.13303
Jilkova V, Strakova P, Frouz J. Foliage C: N ratio, stage of organic matter decomposition and interaction with soil affect microbial respiration and its response to C and N addition more than C:N changes during decomposition. Appl Soil Ecol. 2020;152:e103568. Doi: http://doi.org/10.1016/j.apsoil.2020.103568
Martínez-García LB, Korthals GW, Brussaard L, Mainardi G, De Deyn, GB. Litter quality drives nitrogen release, and agricultural management (organic vs. conventional) drives carbon loss during litter decomposition in agro-ecosystems. Soil Biol Biochem. 2021;153:e108115. Doi: http://doi.org/10.1016/j.soilbio.2020.108115.
Menezes JFS, Berti MPS, Júnior VDV, Ribeiro RL, Berti CLF. Extração e exportação de nitrogênio, fósforo e potássio pelo milho adubado com dejetos de suínos. Rev Agric Neotrop. 2018;5:55-59. Doi: http://doi.org/10.32404/rean.v5i3.1645
Nash DM, Haygarth PM, Turner BL, Condron LM, McDowell RW, Richardson AE, Watkins M, Heaven MW. Using organic phosphorus to sustain pasture productivity: a perspective. Geoderma. 2014;221:11-19. Doi: http://doi.org/10.1016/j.geoderma.2013.12.004
Alewell C, Ringeval B, Ballabio C, Robinson DA, Panagos P, Borrelli P. Global phosphorus shortage will be aggravated by soil erosion. Nat Commun. 2020;11:e4546. Doi: http://doi.org/10.1038/s41467-020-18326-7
Sulieman S, Mühling KH. Utilization of soil organic phosphorus as a strategic approach for sustainable agriculture. J Plant Nut Soil Sci. 2021;184:311-319. Doi: http://doi.org/10.1002/jpln.202100057
Subedi A, Franklin D, Cabrera M, McPherson A, Dahal S. Grazing systems to retain and redistribute soil phosphorus and to reduce phosphorus losses in Runoff. Soil Syst. 2020;4:1-14. Doi: http://doi.org/10.3390/soilsystems4040066
Franzluebbers AJ, Poore MH, Freeman SR, Rogers JR. Soil-surface nutrient distributions in grazed pastures of North Carolina. J Soil Water Cons. 2019;74:571-583. Doi: http://doi.org/10.2489/jswc.74.6.571
Yoshitake S, Soutome H, Koizumi H. Deposition and decomposition of cattle dung and its impact on soil properties and plant growth in a cool-temperate pasture. Ecol Res. 2014;29:673-684. Doi: http://doi.org/10.1007/s11284-014-1153-2.
Nascimento CA, Pagliari PH, Faria LDA, Vitti GC. Phosphorus mobility and behavior in soils treated with calcium, ammonium, and magnesium phosphates. Soil Sci Soc Am J. 2018;82:622-631. Doi: http://doi.org/10.2136/sssaj2017.06.0211
Sharpley A, Helmers MJ, Kleinman P, King K, Leytem A, Nelson N. Managing crop nutrients to achieve water quality goals. J Soil Water Cons. 2019;74:91-101. Doi: http://doi.org/10.2489/jswc.74.5.91A
Rothwell SA, Doody DG, Johnston C, Forber KJ, Cencic O, Rechberger H, Withers PJA. Phosphorus stocks and flows in an intensive livestock dominated food system. Res Cons Recy. 2020;163:e105065. Doi: http://doi.org/10.1016/j.resconrec.2020.105065
Kumaragamage D, Akinremi OO. Manure phosphorus: Mobility in soils and management strategies to minimize losses. Curr Poll Rep 2018;4:162-174. Doi: http://doi.org/10.1007/s40726-018-0084-x
Everaert M, Degryse F, McLaughlin MJ, Smolders S, Andelkovic I, Baird R, Smolders E. Enhancing the phosphorus content of layered double hydroxide fertilizers by intercalating polymeric phosphate instead of orthophosphate: A feasibility study. J Col Int Sci. 2022;628:519-529. Doi: http://doi.org/10.1016/j.jcis.2022.07.149.
Shi J, Gong J, Li X, Zhang Z, Zhang W, Li Y, Song L, Zhang S, Dong J, Baoyin TT. Phosphorus application promoted the sequestration of orthophosphate within soil microorganisms and regulated the soil solution P supply in a temperate grassland in northern China: A 31P NMR study. Soil Till Res. 2023;227:e105612. Doi: http://doi.org/10.1016/j.still.2022.105612
McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C. The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant Soil. 2011;349:69-87. Doi: http://doi.org/10.1007/s11104-011-0907-7
Coelho JJ, Prieto ML, Dowling S, Hennessy A, Casey I, Woodcock T, Kennedy N. Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag. 2018;78:8-15. Doi: http://doi.org/10.1016/j.wasman.2018.05.017
Stutter MI, Shand CA, George TS, Blackwell MS, Bol R, MacKay RL, Richardson AE, Condron LM, Turner BL, Haygarth PM. Recovering phosphorus from soil: a root solution? Environ. Sci. Technol. 2012;46:1977–1978. Doi: http://doi.org/10.1021/es2044745
Assmann JM, Martins AP, Anghinoni I, Denardin, LGO, Nichel GH, Costa, SEVA, Pereira e Silva RA, Balerini F, Carvalho PCF, Franzluebbers AJ. Phosphorus and potassium cycling in a long-term no-till integrated soybean-beef cattle production system under different grazing intensities in subtropics. Nutr Cycl Agroecosys. 2017;108:21-33. Doi: http://doi.org/10.1007/s10705-016-9818-6
Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, Nelson PN, Pássaro M, Kantzas E, Taylor LL, Sarkar B, Kelland M, Lucia E, Kantola I, Muller C, Rau G, Hansen, J. Farming with crops and rocks to address global climate, food and soil security. Nat Plants. 2018;4:138-147. Doi: https://doi.org/10.1038/s41477-018-0108-y
Parfitt RL. Anion adsorption by soils and soil materials. Adv Agron. 1979;30:1-50. Doi: https://doi.org/10.1016/S0065-2113(08)60702-6
Peluco RG, Marques Júnior J, Siqueira DS, Pereira GT, Barbosa RS, Teixeira DDB. Mapeamento do fósforo adsorvido por meio da cor e da suscetibilidade magnética do solo. Pesquisa Agrope Bras. 2015;50:259-266. Doi: https://doi.org/10.1590/S0100-204X2015000300010
Li KW, Lu HL, Nkoh JN, Xu RK. The important role of surface hydroxyl groups in aluminum activation during phyllosilicate mineral acidification. Chemosph. 2023;313:137570. Doi: https://doi.org/10.1016/j.chemosphere.2022.137570
Gasparini AS, Fontes MPF, Pacheco AA, Ker JC. Gibbsite crystallinity and morphology in ferralsols and bauxites. Min. 2022;12:1441. Doi: https://doi.org/10.3390/min12111441
Pavinato PS, Rocha GC, Cherubin MR, Harris I, Jones DL, Withers PJA. Map of total phosphorus content in native soils of Brazil. Sci Agric. 2021;78:e20200077 Doi: https://doi.org/10.1590/1678-992X-2020-0077
Ratanavirakul P, Thanachit S, Anusontpornperm S, Kheoruenromme I. Using soil P tests and P-sorption index to predict p requirement for cassava grown in tropical upland sandy soils. Comm Soil Sci Plant An. 2023; 54:311-325. Doi: https://doi.org/10.1080/00103624.2022.2112591
Nortjé GP, Laker MC. Factors that determine the sorption of mineral elements in soils and their impact on soil and water pollution. Min. 2021;11:e821. Doi: https://doi.org/10.3390/min11080821
Barbosa JZ, Poggere G, Mancini M, Silva SHG, Motta ACV, Curi, N. National-scale spatial variations of soil phosphorus retention capacity in Brazil. Phys Chem Earth, Parts A/B/C. 2022;128:e103271. Doi: https://doi.org/10.1016/j.pce.2022.103271
Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. Phosphorus dynamics: from soil to plant. Plant Physiol. 2011;156:997-1005. Doi: https://doi.org/10.1104/pp.111.175232
Melo FM, Mendonça LPC. Avaliação da disponibilidade de fósforo em solo argiloso com diferentes teores de matéria orgânica. Human Tecn (FINOM). 2019;18:52-67.
Zhao Y, Li R, Huang Y, Sun X, Qin W, Wei F, Ye Y. Effects of various phosphorus fertilizers on maize yield and phosphorus uptake in soils with different pH values. Arch Agron Soil Sci. 2022;68:1746-1754. Doi: https://doi.org/10.1080/03650340.2021.1926997
Johan PD, Ahmed OH, Omar L, Hasbullah NA. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agron. 2021;11:e2010. Doi: https://doi.org/10.3390/agronomy11102010
Yang F, Sui L, Tang C, Li J, Cheng K, Xue Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Sci Total Environ. 2021;768:e145106. Doi: https://doi.org/10.1016/j.scitotenv.2021.145106
Olego MÁ, Cuesta-Lasso MD, Visconti Reluy F, López R, López-Losada A, Garzón-Jimeno E. Laboratory extractions of soil phosphorus do not reflect the fact that liming increases rye phosphorus content and yield in an acidic soil. Plants. 2022;11:e2871. Doi: https://doi.org/10.3390/plants11212871
Tiecher T, Fontoura SM, Ambrosini VG, Araújo EA, Alves LA, Bayer C, Gatiboni LC. Soil phosphorus forms and fertilizer use efficiency are affected by tillage and soil acidity management. Geoderma. 2023; 435:116495. Doi: https://doi.org/10.1016/j.geoderma.2023.116495
Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil. 2011;349:89-120. Doi: http://doi.org/10.1007/s11104-011-0880-1
Nellesen S, Kovar J, Haan M, Russell J. Grazing management effects on stream bank erosion and phosphorus delivery to a pasture stream. Can J Soil Sci. 2011;91:385-395. Doi: http://doi.org/10.4141/cjss10006
Malan JAC, Flint N, Jackson EL, Irving AD, Swain DL. Offstream watering points for cattle: protecting riparian ecosystems and improving water quality? Agric Ecosyst Env. 2018;256:144-152. Doi: http://doi.org/10.1016/j.agee.2018.01.013
Pilon C, Moore Jr PA, Pote DH, Pennington JH, Martin JW, Brauer DK, Raper RL, Dabney SM, Lee J. Long‐term effects of grazing management and buffer strips on soil erosion from pastures. J Env Quality. 2017;46:364-372. Doi: http://doi.org/10.2134/jeq2016.09.0378
Dourado DL, Dubeux Junior JCB, Mello ACL, Santos MVF, Lira MA, Freitas EV, Apolinário VXO, Santos ERS. 2019. Canopy structure and forage nutritive value of elephantgrass subjected to different stocking rate and N fertilization in the “Mata Seca” ecoregion of Pernambuco. Rev Bras Zootec. 2019;48:e20180134. Doi: https://doi.org/10.1590/rbz4820180134
Prakash S, Verma JP. Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (Eds.). Potassium solubilizing microorganisms for sustainable agriculture, 1st ed. New Delhi: Springer; 2016. p. 327-331. Doi: https://doi.org/10.1007/978-81-322-2776-2_23
Shirale AO, Meena BP, Gurav PP, Srivastava S, Biswas AK, Thakur JK, Somasundaram J, Patra AK, Rao AS. Prospects and challenges in utilization of indigenous rocks and minerals as source of potassium in farming. J Plant Nut. 2019;42:2682-2701. Doi: http://doi.org/10.1080/01904167.2019.1659353
Prajapati K, Modi HA. The importance of potassium in plant growth–a review. Indian J. Plant Sci. 2012;1:177-186. Doi: http://doi.org/10.9790/9622-0803054452
Tamburrano A, Tavazzi B, Callà CAM, Amorini AM, Lazzarino G, Vincenti S, Zottola T, Campagna MC, Moscato U, Laurenti P. Biochemical and nutritional characteristics of buffalo meat and potential implications on human health for a personalized nutrition. Italian J Food Safety. 2019;8:e8317. Doi: http://doi.org/10.4081/ijfs.2019.8317
Qin N, Faludi G, Beauclercq S, Pitt J, Desnica N, Pétursdóttir A, Newton EE, Angelidis A, Givens I, Juniper D, Humphries D, Gunnlaugsdottir H, Stergiadis, S. Macromineral and trace element concentrations and their seasonal variation in milk from organic and conventional dairy herds. Food Chem. 2021;359:e129865. Doi: http://doi.org/10.1016/j.foodchem.2021.129865.
Goulding K, Murrell TS, Mikkelsen RL, Rosolem C, Johnston J, Wang H, Alfaro MA. Outputs: potassium losses from agricultural systems. In: Murrell TS, Mikkelsen RL, Sulewski G, Norton R, Thompson ML. Improving potassium recommendations for agricultural crops. 1st ed. Cham: Springer Nature; 2021. p 75–97. Doi: https://doi.org/10.1007/978-3-030-59197-7_3
Korucu T, Shipitalo MJ, Kaspar TC. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff. Soil Till Res. 2018;180:99-106. Doi: https://doi.org/10.1016/j.still.2018.03.004
Schlesinger WH. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochem. 2021;154:427-432. Doi: https://doi.org/10.1007/s10533-020-00704-4
Bender RR, Haegele JW, Ruffo ML, Below FE. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect‐protected maize hybrids. Agron J. 2013;105:161-170. Doi: http://doi.org/10.2134/agronj2012.0352
Rogers CW, Dari B, Hu G, Mikkelsen R. Dry matter production, nutrient accumulation, and nutrient partitioning of barley. J Plant Nutr Soil Sci. 2019;182:367-373. Doi: https://doi.org/10.1002/jpln.201800336
Schlesinger WH. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochem. 2021;154:427-432. Doi: https://doi.org/10.1007/s10533-020-00704-4
Oliveira PD, Freitas RJ, Kluthcouski J, Ribeiro AA, Cordeiro LAM, Teixeira LP, Melo RAC, Vilela L, Balbino LC. Evolução de sistemas de integração lavoura-pecuária-floresta (ILPF): estudo de caso da Fazenda Santa Brígida, Ipameri, GO. Embrapa Cerrados-Documentos (INFOTECA-E). 2014.
Yan Y, Wang X, Guo Z, Chen J, Xin X, Xu D, Yan R, Chen B, Xu L. Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China. Catena. 2018;170:159-168. Doi: https://doi.org/10.1016/j.catena.2018.06.013
Herrera AM, Mello ACL, Apolinário, VXO, Dubeux Jr JCB, Mora RE, Freitas EV. Soil fertility in silvopastoral systems integrating tree legumes with signalgrass (Urochloa decumbens Stapf. R. Webster). Arch Lat Prod Anim. 2023;31;287-298. Doi: https://doi.org/10.53588/alpa.310401
Ali A, Naeem M, Dar TA, Idrees M, Khan MMA, Uddin M, Dantu PK, Singh, TB. Nutrient uptake, removal, and cycling in eucalyptus species. E Plant Nutr. 2017;37-45. Doi: https://doi.org/10.10007/978-3-319-58841-4_2
Dick G, Schumacher MV. Silvicultura de Acacia mearnsii no sul do Brasil: biomassa e nutrientes. Biofix Scient J. 2019;4;97-103. Doi: https://doi.org/10.5380/biofix.v4i2.64879
Apolinário VXO, Dubeux Jr JCB, Lira MA, Ferreira RLC, Mello ACL, Santos MVF, Sampaio EVSB, Muir JP. Tree legumes provide marketable wood and add nitrogen in warm‐climate silvopasture systems. Agron J. 2015;107;1915-1921. Doi: https://doi.org/10.2134/agronj14.0624
Moura ON, Passos MAA, Ferreira RLC, Molica SG, Lira Junior MA, Lira MA, Santos MVF. Biomass and nutrientes distribution of Mimosa caesalpiniaefolia Benth. Rev Árvore. 2006;30;877-884. Doi: https://doi.org/10.1590/s010067622006000600002
Fixen PE, Johnston AM. World fertilizer nutrient reserves: a view to the future. J Sci Food Agric. 2012;92:1001-1005. Doi: https://doi.org/10.1002/jsfa.4532
Bley H, Gianello C, Santos LDS, Selau LPR. Nutrient release, plant nutrition, and potassium leaching from polymer-coated fertilizer. Rev Bras Ci Solo. 2017;41:e0160142. Doi: https://doi.org/10.1590/18069657rbcs20160142
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência Animal Brasileira / Brazilian Animal Science
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).