Níveis crescentes de fubá de milho melhoram parâmetros químico-bromatológicos e fermentativos da silagem de maniçoba
DOI:
https://doi.org/10.1590/1809-6891v25e-75861EResumo
A ensilagem da maniçoba (Manihot pseudoglaziovii) é importante para preservar os nutrientes dessa planta forrageira. Todavia, o teor de umidade da planta pode gerar fermentações indesejáveis. Objetivou-se avaliar efeito de níveis de fubá de milho (0, 10, 20 e 30%) sobre a composição bromatológica e parâmetros fermentativos da silagem de maniçoba, além de identificar as variáveis mais afetada pelo aditivo. As concentrações de matéria seca (MS), carboidratos não-fibrosos (CNF), nutrientes digestíveis totais (NDT) e ácido propiônico aumentaram em função dos níveis de fubá de milho (P<0,05). Os teores de proteína bruta (PB), lignina e ácido butírico, além do pH, foram reduzidos pelo aditivo (P<0,05). Dois grupos foram formados na análise de componentes principais. O grupo I foi formado por variáveis afetadas positivamente pela inclusão do fubá de milho: MS, hemicelulose, CNF e NDT. O grupo II foi formado por variáveis que tiveram seus valores reduzidos pela inclusão do aditivo: PB, lignina, matéria mineral e ácido butírico. A silagem de maniçoba, com ou sem fubá de milho, apresenta bom perfil fermentativo e composição bromatológica adequada para a alimentação de ruminantes. Os teores de MS e NDT são as variáveis da composição químico-bromatológica mais influenciadas pela inclusão do fubá de milho, enquanto pH e ácido butírico são as variáveis do perfil fermentativo mais afeadas pelo aditivo absorvente. Sugere-se a inclusão de níveis moderados de fubá na silagem de maniçoba para obter melhor perfil de fermentação e a maior concentração de nutrientes digestíveis, sem descaracterizar o alimento como volumoso.
Downloads
Referências
Jamelli D, Bernard E, Melo FP. Habitat use and feeding behavior of domestic free-ranging goats in a seasonal tropical dry forest. J. Arid Environ. 2021; 190:e104532. DOI: https://doi.org/10.1016/j.jaridenv.2021.104532.
Dubeux Jr JCB, Santos MVF, Cunha MV, Santos DC, Almeida RTS, Mello ACL, Souza TC. Cactus (Opuntia and Nopalea) nutritive value: A review. Anim. Feed Sci. Technol. 2021; 275:e114890. DOI: https://doi.org/10.1016/j.anifeedsci.2021.114890.
Muck RE, Nadeau EMG, McAllister TA, Contreras-Govea FE, Santos MC, Kung Jr, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018; 101(5):3980-4000. DOI: https://doi.org/10.3168/jds.2017-13839.
Costa ER, Mello ACL, Guim A, Costa SBM, Abreu BS, Silva PHF, Neto DS. Adding corn meal into mixed elephant grass–butterfly pea legume silages improves nutritive value and dry matter recovery. J. Agric. Sci. 2022; 160(3-4):185-193. DOI: https://doi.org/10.1017/S0021859622000284.
Lemos MF, Andrade AP, Silva PHF, Santos CO, Souza CFB, Silva MAV, Oliveira Neto PM. Nutritional value, fermentation losses and aerobic stability of elephant grass (Pennisetum purpureum Schum.) silage treated with exogenous fibrolytic enzymes. Acta Sci. - Anim. Sci. 2020; 42:e48272. DOI: https://doi.org/10.4025/actascianimsci.v42i1.48272.
Bernardes TF, Daniel JLP, Adesogan AT, McAllister TA, Drouin P, Nussio LG, Cai Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018; 101(5):4001-4019. DOI: https://doi.org/10.3168/jds.2017-13703.
Alencar FHH, Silva DS, Andrade AP, Carneiro MSS, Feitosa JV. Composição química e digestibilidade da pornunça sob duas fontes de adubação orgânica e cortes. Rev. Caatinga. 2015; 28(1):215-222. DOI: https://doi.org/10.1590/1983-21252015v28n324rc.
Pinheiro FM, Nair PR. Silvopasture in the Caatinga biome of Brazil: A review of its ecology, management, and development opportunities. For. Syst. 2018; 27(1):eR01S. DOI: https://doi.org/10.5424/fs/2018271-12267.
Costa JHS, Cavalcante ITR, Medeiros GR, Ribeiro NL, Santos SGCG, Nascimento GV, Carvalho CBM. Propagação vegetativa de mudas de Manihot pseudoglaziovii com diferentes diâmetros de estacas. Rev. Inst. Nac. Semi. 2022; 1(3):49-55. Available from: https://editoraverde.org/portal/revistas/index.php/revinsa/article/view/188.
Gomes MLR, Alves FC, Silva Filho JRV, Souza CMD, Silva MNP, Santana Junior RA, Voltolini TV. Maniçoba for sheep and goats-forage yield, conservation strategies, animal performance and quality of products. Cienc. Rural. 2021; 52(3):e20201096. DOI: https://doi.org/10.1590/0103-8478cr20201096.
Kung Jr L, Shaver RD, Grant RJ, Schmidt RJ. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018; 101(5):4020-4033. DOI: https://doi.org/10.3168/jds.2017-13909.
Gusmao JO, Danés MAC, Casagrande DR, Bernardes TF. Total mixed ration silage containing elephant grass for small‐scale dairy farms. Grass Forage Sci. 2018; 73(3):717-726. DOI: https://doi.org/10.1111/gfs.12357.
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013; 22(6):711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507.
IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. No. 106. Rome: FAO; 2015. 550p.
Santos HG. Sistema Brasileiro de Classificação de Solos. 5th ed. Brasília: Embrapa; 2018. 356p. Portuguese.
Horwitz W. Official Methods of Analysis of AOAC International. 18th ed. Gaithersburg: AOAC; 2005. Official Methods: 934.01 (dry matter), 920.39 (ether extract), 942.05 (ashes), and 954.01 (crude protein).
Van Soest PV, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991; 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
Sniffen CJ, O'connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992; 70(11):3562-3577. https://doi.org/10.2527/1992.70113562x.
Bolsen KK, Lin C, Brent BE, Feyerherm AM, Urban JE, Aimutis WR. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. J. Dairy Sci. 1992 75(11):3066-3083. https://doi.org/10.3168/jds.S0022-0302(92)78070-9.
Patterson T, Klopfenstein TJ, Milton T, Brink DR. Evalua-tion of the 1996 beef cattle NRC model predictions of intake and gain for calves fed low or medium energy density diets. Nebraska Beef Cattle Reports: 2000; 76: 26-29. Available from: https://digitalcommons.unl.edu/animalscinbcr/314/.
Detmann E. Métodos para análise de alimentos. 2nd ed. Visconde de Rio Branco: Suprema; 2021. 350p. Portuguese.
Kung Jr, L, Ranjit NK. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 2000; 84(5):1149-1155. DOI: https://doi.org/10.3168/jds.S0022-0302(01)74575-4.
SAS Institute Inc. SAS® OnDemand for Academics: User’s Guide. 1st ed. Cary: SAS Institute Inc.; 2014. 148p.
Mardia KV, Kent JT, Bibby JM. Multivariate analysis. 1st ed. London: Academic, 1979. 64p.
Maciel MDV, Carvalho FFRD, Batista ÂMV, Souza EJOD, Maciel LPAA, Lima DMD. Maniçoba hay or silage replaces Tifton 85 hay in spineless cactus diets for sheep. Acta Sci. - Anim. Sci. 2019; 41:e42553. DOI: https://doi.org/10.4025/actascianimsci.v41i1.42553.
Matias AGS, Araújo GGL, Campos FS, Moraes SA, Gois GC, Silva TS, Voltolini TV. Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding. J. Agric. Sci. 2020; 158(4):304-312. DOI: https://doi.org/10.1017/S0021859620000581.
Borreani G, Tabacco E, Schmidt RJ, Holmes BJ, Muck RE. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018; 101(5):3952-3979. DOI: https://doi.org/10.3168/jds.2017-13837.
Daniel JLP, Bernardes TF, Jobim CC, Schmidt P, Nussio LG. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 2019; 74(2):188-200. DOI: https://doi.org/10.1111/gfs.12417.
Marcondes MI, Silva AL, Gionbelli MP, Campos S. Exigências de energia para bovinos de corte. BR-Corte: Tabela Brasileira De Exigências Nutricionais; DZO/UFV: Viçosa, Minas Gerais, Brazil, 163-190. 2016.
Muir JP, Santos MVF, Cunha MV, Dubeux Jr. JCB, Lira Jr MA, Souza RT, Souza TC. Value of endemic legumes for livestock production on Caatinga rangelands. Rev. Bras. Cienc. Agr. 2019; 14(2):1-12. DOI: https://doi.org/10.5039/agraria.v14i2a5648.
Santos F, Charll MDS, Lima Júnior DMD, Cardoso DB, Maciel M, Vale D, Carvalho FFRD. Replacement of Tifton 85 hay with maniçoba hay in the spineless cactus diet of sheep. Rev. Caatinga. 2021; 34:219-227. DOI: https://doi.org/10.1590/1983-21252021v34n122rc.
Costa ER, Mello ACL, Guim A, Costa SBM, Abreu BS, Silva PHF, Neto DS. Adding corn meal into mixed elephant grass–butterfly pea legume silages improves nutritive value and dry matter recovery. J. Agric. Sci. 2022;160(3-4):185-193. DOI: https://doi.org/10.1017/S0021859622000284.
Ramos JPF, Santos EM, Santos APM, Souza WH, Oliveira JS. Ensiling of forage crops in semiarid regions. Advances in Silage Production and Utilization, 65. 2016.
Gang G, Chen S, Qiang L, Zhang SL, Tao S, Cong W, Huo W. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J. Integr. Agric. 2020; 19(3):838-847. DOI: https://doi.org/10.1016/S2095-3119(19)62707-3.
Queiroz OCM, Ogunade IM, Weinberg Z, Adesogan AT. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 2018; 101(5):4132-4142. DOI: https://doi.org/10.3168/jds.2017-13901.
Backes AA, Santos LLD, Fagundes JL, Barbosa LT, Mota M, Vieira JS. Valor nutritivo da silagem de maniçoba (Manihot pseudoglaziovii) com e sem fubá de milho como aditivo. Rev. Bras. Saude Prod. Anim. 2014; 15(1):182-191. Available from: https://www.scielo.br/j/rbspa/a/ZCVkMqsNqXnRTgcxrxLDq9x/abstract/?lang=pt.
Anjos ANA, Almeida JCDC, Viegas CR, Silva PHF, Morais LF, Nepomuceno DDD, Soares FA. Protein and carbohydrate profiles of 'Massai' grass silage with pelleted citrus pulp and microbial inoculant. Pesqui. Agropecu. Bras. 2022; 57:e02732. DOI: https://doi.org/10.1590/S1678-3921.pab2022.v57.02732.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência Animal Brasileira / Brazilian Animal Science
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).