Adição de emulsificante nas rações de frangos de corte com redução dos níveis de energia metabolizável

Autores

DOI:

https://doi.org/10.1590/1809-6891v24e-75526E

Resumo

Objetivou-se avaliar a adição do emulsificante, lecitina de soja, nas rações de frangos com redução dos níveis de energia metabolizável e correlacioná-las com os coeficientes de metabolizabilidade de nutrientes, além da determinação da energia metabolizável aparente (EMA). Realizou-se dois ensaios metabólicos em delineamento inteiramente casualizados, esquema fatorial 3x2 (ração com três níveis de energia metabolizável, com ou sem a inclusão do emulsificante na dieta), totalizando seis tratamentos. Na fase inicial, os pintos receberam dieta com 2.950, 3.050 e 3.150 kcal/kg de energia metabolizável, com seis repetições com 10 aves, totalizando 360 aves. Na fase de crescimento foram utilizadas 210 aves, sendo sete repetições com cinco frangos e os níveis de energia testados foram: 3.100, 3.150 e 3.200 kcal/kg de ração. Na fase inicial, observou-se efeito de interação, apresentando aumento do coeficiente de metabolizabilidade do nitrogênio (CMN) ao adicionar o emulsificante em dietas com energia reduzida e também, efeito do emulsificante no aumento da energia metabolizável aparente corrigida pelo balanço do nitrogênio (EMAn). Na fase de crescimento, observou-se efeito de interação, apresentando aumento da EMA e EMAn ao adicionar o emulsificante em dietas com menores níveis de energia. Conclui-se que a inclusão do emulsificante é indicada para frangos de corte, pois permite reduzir a energia metabolizável da dieta, melhorando a EMAn nas fases inicial e de crescimento, bem como a da EMA com frangos em crescimento.
Palavras-chave: digestibilidade; lecitina de soja; lipídeos; metabolismo

Downloads

Não há dados estatísticos.

Referências

Thng A, Ting JX, Tay HR, Sho CY, Ong RC, Tey D. The use of predicted apparent metabolizable energy values to understand the oil and fat variability in broilers. Online Journal of Animal and Feed Research. 2020; 10(4): 150-157. DOI: https://dx.doi.org/10.51227/ojafr.2020.21

Barzegar S, Wu S, Choct M, Swick RA. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science. 2020; 99(1): 487-498. DOI: https://doi.org/10.3382/ps/pez554.

Ravindran V, Tancharoenrat P, Zeafarian F, Revindran G. Fats in poultry nutrition: Digestive physiology and factors influencing their utilization. Animal Feed Science and Technology. 2016; 213:1-21. DOI: https://doi.org/10.1016/j.anifeedsci.2016.01.012.

Mohammadigheisar M, Shouldice VL, Torrey S, Widowski TM, Ward NE, Kiarie EG. Growth performance, organ attributes, nutrient and caloric utilization in broiler chickens differing in growth rates when fed a corn-soybean meal diet with multienzyme supplement containing phytase, protease and fiber degrading enzymes, Poultry Science. 2021; 100(9):101362. DOI: https://doi.org/10.1016/j.psj.2021.101362.

Dabbou S, Trocino A, Xiccato G, Nery J, Madrid J, Martinez S, Hamandez F, Kalmar ID, Capucchio MT, Colombino E, Biasato I, Baioli L, Gasco L, Mugnai C, Schiavone C. The effect of dietary supplementation with globin and spraydried porcine plasma on performance, digestibility and histomorphological traits in broiler chickens. Journal of Animal Physiology and Animal Nutrition. 2020; 1- 9. DOI: https://doi.org/10.1111/jpn.13356

Liu X, Yoon SB, Kim IH. Growth performance, nutrient digestibility, blood profiles, excreta microbial counts, meat quality and organ weight on broilers fed with de-oiled lecithin emulsifier. Animals. 2020; 10(3): 478. DOI: https://doi.org/10.3390/ani10030478

Liu X, Yun KS, Kim IH. Evaluation of sodium stearoyl-2-lactylate and 1, 3- diacylglycerol supplementation in diets with different energy content on the growth performance, meat quality, apparent total tract digestibility, and blood lipid profiles of broiler chickens. Poultry Science. 2019; 57 (1): 55-62. DOI: https://doi.org/10.2141/jpsa.0190007

Haetinger VS, Dalmoro YK, Godoy GL, Lang MB, de Souza OF, Aristimunha P, Stefanello C. Optimizing cost, growth performance, and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens, Poultry Science. 2021; 100(4): 101025. DOI: https://doi.org/10.1016/j.psj.2021.101025.

Siyal FA, Babazadeh D, Wang C, Arain MA, Saeed M, Ayasan T, Zhang L, Wang T. Emulsifiers in the poultry industry. World’s Poultry Science Journal. 2017; 73(3): 611-620. DOI: https://doi.org/10.1017/S0043933917000502

Araújo JMA. Emulsão/Emulsificantes. In: Araújo JMA. Química de alimentos: teoria prática. 4nd ed. Viçosa: UFV; 2008. p.211-272. Portuguese.

Robert C, Couedelo L, Vayasse C, Michalscki MC. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie. 2020; 169: 212-132. DOI: https://doi.org/10.1016/j.biochi.2019.11.017

Majdolhosseini L, Ghasemi HA, Hajkhodadadi I, Moradi MH. Nutritional and physiological responses of broiler chickens to dietary supplementation with de-oiled soyabean lecithin at different metabolisable energy levels and various fat sources. British Journal of Nutrition. 2019; 122(8): 863–872. DOI: https://doi.org/10.1017/S000711451900182X

Oliveira LS, Balbino EM, Silva TNS, Ily L, Rocha TC, Strada ESO, Pinheiro AM. Brito JAG. Use of emulsifier and lipase in feeds for broiler chickens. Sêmina: Ciências Agrárias. 2019; 40(6): 3181-3196. DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n6Supl2p3181

Wealleans AL, Buyse J, Scholey D, Van Campenhout L, Burton E, Di Banedetto M, Pritchard S, Nuyens F, Jasen M. Lysolecithin, but not lecithin, improves nutrient digestibility and growth rates in young broilers. British Poultry Science. 2020; 61(4): 1-22. DOI: http://dx.doi.org/10.1080/00071668.2020.1736514

Rostagno HS, Albino LFT, Hannas MI, Donzele JL, Sakomura NK, Parazzo FG, Saraiva A, Teixeira ML, Rodrigues PB, Oliveira RF, Barreto SLT, Brito CO. Tabelas Brasileiras para Aves e Suínos. 4nd ed. Viçosa: Departamento de Zootecnia; 2017. 488p. Portuguese.

Carvalho GB, Dourado LRB, Lopes JB, Ferreira AHC, Ribeiro MN, Merval SRG, Bioagioti D, Silva FES. Métodos de análise da cinza insolúvel em ácido utilizada como indicador na determinação da energia metabolizável do milho para aves. Revista Brasileira de Saúde e Produção Animal. 2013; 14 (1): 43-53. (https://www.scielo.br/j/rbspa/a/HRr5m7ghNs6vjrY79j3MYKM/?format=pdf&lang=pt)

Silva DJ, Queiroz AC. Análise de alimentos, métodos químicos e biológicos. 3nd ed. Viçosa: UFV; 2006. 235p. Portuguese.

Sakomura NK, Rostagno HS. Métodos de pesquisa em nutrição de monogástricos. 2nd ed. Jaboticabal: Funep; 2016. 262p. Portuguese.

Ravindran V, Abdollahi MR. Nutrition and digestive physiology of the broiler chick: state of the art and outlook. Animals. 2021; 11(10): 2795. DOI: https://doi.org/10.3390/ani11102795.

Yang Z, Pirgozliev VR, Rose SP, Woods S, Yang HM, Wang ZY, Belford MR. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poultry Science. 2020; 99:320-330. DOI: https://doi.org/10.3382/ps/pez495

Zaefarian F, Abdollahi MR, Cowieson A, Ravindran V. Avian liver: the forgotten organ. Animals. 2019; 9(2): 63. DOI: https://doi.org/10.3390/ani9020063.

Arshad MA, Bhatti AS, Hassan I, Rahman MA, Rehman MS. Effects of bile acids and lipase supplementation in low-energy diets on growth performance, fat digestibility and meat quality in broiler chickens. Brazilian Journal of Poultry Science. 2020; 22(2): 001-008. DOI: https://doi.org/10.1590/1806-9061-2020-1258

Meng X, Slominski A, Guenter W. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets. Poultry Science. 2017; 83:1718-1727. DOI: https://doi.org/10.1093/ps/83.10.1718

Wealleans AL, Bierinckx K, Benedetto M. Fats and oils in pig nutrition: Factors affecting digestion and utilization. Animal Feed Science and Technology. 2021; 277: 114950. DOI: https://doi.org/10.1016/j.anifeedsci.2021.114950.

Shahid I, Sharif M, Yousaf M, Ahmad F, Anwar U, Ali A, Hussain M, Rahman MA. Emulsifier supplementation response in ross 308 broilers at 1-10 days. Brazilian Journal of Poultry Science. 2020; 22 (3): 001-006. DOI: https://doi.org/10.1590/1806-9061-2020-1301

Faryadi S, Lashkari S, Ndou SP, Woyengo TA. Nutrient digestibility in broiler chickens fed diets containing high levels of soybean oil is affected by the source of fiber. Canadian Journal of Animal Science. 2023; 00: 1-9. DOI: https://doi.org/10.1139/cjas-2022-0064

Saleh AA, Alharthi AS, Alhotan RA, Atta MS, Abdel-Moneim AE. Soybean oil replacement by poultry fat in broiler diets: performance, nutrient digestibility, plasma lipid profile and muscle fatty acids contente. Animals. 2021; 11(9): 2609. DOI: https://doi.org/10.3390/ani11092609

Pires MF, Leandro NSM, Oliveira HF, Jacob DV, Carvalho FB, Stringhini JH, Carvalo DP, Andrade CL. Effect of dietary inclusion of protected sodium butyrate on the digestibility and intestinal histomorphometry of commercial laying hens. Brazilian Journal of Poultry Science. 2021; 23(2): 001-008. DOI: https://doi.org/10.1590/1806-9061-2020-1406

Flores-Andrade E, Allende-Baltazar Z, Sandoval-González PE, Jiménez-Fernández M, Beristain CI, Pascual-Pineda LA. Carotenoid nanoemulsions stabilized by natural emulsifiers: Whey protein, gum Arabic, and soy lecithin. Journal of Food Engineering. 2021; 290: 110208. DOI: https://doi.org/10.1016/j.jfoodeng.2020.110208.

Zao PY, Kim IH. Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Science. 2017; 96(5): 1341-1347. DOI: https://doi.org/10.3382/ps/pew469

Nemati M, Ghasemi HÁ, Hajkhodadadi I, Moradi MH. De-oiled soy lecithin positively influenced growth performance, nutrient digestibility, histological intestinal alteration, and antioxidant status in turkeys fed with low energy diets. British Poultry Science. 2021; 62(6): 858-867. DOI: https://doi.org/10.1080/00071668.2021.1943312.

Ahmadi-Sefat AA, Taherpour K, Ghasemi HA, Gharaei MA, Shirzadi H, Rostami F. Effects of an emulsifier blend supplementation on growth performance, nutrient digestibility, intestinal morphology, and muscle fatty acid profile of broiler chickens fed with different levels of energy and protein, Poultry Science. 2022; 101(11):102145. DOI: https://doi.org/10.1016/j.psj.2022.102145.

Andrade RC, Lara DJC, Pompeu MA, Cordeal PC, Miranda DJA, Baião NC. Avaliação da correção da energia pelo balanço de nitrogênio em alimentos para frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2016; 68 (2):.497-505. DOI: https://doi.org/10.1590/1678-4162-7971

Abbas MT, Arif M, Saeed M, Reyad-ul-ferdous M, Hassan MA, Arain MA, Rehman A. Emulsifier effect on fat utilization in broiler chicken. Asian Journal of Animal and Veterinary Advances. 2016; 11(3): 158-167. DOI: https://dx.doi.org/10.3923/ajava.2016.158.167

Mateos GG, Cámara L, Fondevila G, Lázaro RP. Critical review of the procedures used for estimation of the energy content of diets and ingredients in poultry. Journal of Applies Poultry Research. 2018; 28(3): 506- 525. DOI: https://doi.org/10.3382/japr/pfy025

Nunes ALB, Castilhos F. Chemical interesterification of soybean oil and methyl acetate to FAME using CaO as catalyst. Fuel. 2020; 267: 1- 8. DOI: https://doi.org/10.1016/j.fuel.2020.117264

Kuikem BAV, Behnke DW. The activation of porcine pancreatic lipase by cis-unsaturated fatty acids. Biochimica et Biophysica Acta. 1994; 1214 (2): 148-160. DOI: https://doi.org/10.1016/0005-2760(94)90039-6

Park JH, Nguyen DH, Kim IO. Effects of exogenous lysolecithin emulsifier supplementation on the growth performance, nutrient digestibility, and blood lipid profiles of broiler chickens. Poultry Science. 2018; 55(3): 190-194. DOI: https://doi.org/10.2141/jpsa.0170100

Papadoulos GA, Poutahidis T, Chalvatzi T, Dibenedetto M, Hardas A, Tsiouris V, Georgopoulou I, Arsenos G, Fortomaris PD. Effects of lysolecithin supplementation in lowenergy diets on growth performance, nutrientdigestibility, viscosity and intestinal morphologyof broilers. British Poultry Science. 2018;04 (27): 1 – 29. DOI: https://doi.org/10.1080/00071668.2018.1423676

Mandalawi HA, Lázaro R, Redon M, Herrera J, Menyo D, Mateos, GG. Glycerin and lecithin inclusion in diets for brown egg-layinghens: Effects on egg production and nutrient digestibility. Animal Feed Science and Technology. 2015; 209: 145-156. DOI: https://doi.org/10.1016/j.anifeedsci.2015.07.019

Robert C, Couëdelo L, Vaysse C, Michalski M. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention, Biochimie. 2020; 169: 121-132. DOI: https://doi.org/10.1016/j.biochi.2019.11.017.

Schwarzer K, Adams CA. The influence as absorption of specific phospholipids enhancer in animal nutrition. European Journal of Lipid Science and Technology. 1996; 9: 304-308. DOI: https://doi.org/10.1002/lipi.19960980905

Melegy T, Khaled NF, El-Bana R, Abdelatif H. Dietary fortification of a natural biosurfactant lysolecithin in broiler. African Journal of Agricultural Research. 2010; 52 (21): 2886-2892. (https://academicjournals.org/article/article1380872607_Melegy%20et%20al.pdf)

Lundbek JA, Shemille A, Collingwood FI, Ingólfsson RK, Andersen OS. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of the Royal Society Interface. 2010; 7:373-395. DOI: https://doi.org/10.1098/rsif.2009.0443

Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E. Lysophospholipids open the two-pore domain mechano-gatedk1 channels trek-1 and traak. Journal of Biological Chemistry. 2000; 275 (14); 10128-10133. DOI: https://doi.org/10.1074/jbc.275.14.10128

Zhang Z, Zhang C, Nie K, Zheng E, Luo Z, Kim IH. Lysolecithin improves broiler growth performance through upregulating growth-related genes and nutrient transporter genes expression independent of experimental diet nutrition level. Animals. 2022; 12(23): 3365. DOI: https://doi.org/10.3390/ani12233365

Brautigan DI, Li R, Kubicka E, Turner SD, Garcia JS, Weintraut ML, Wong EA. Lysolecithin as feed additive enhances collagen expression and villus length in the jejunum of broiler chickens. Poultry Science. 2017; 96: 2889-2898. DOI: https://doi.org/10.3382/ps/pex078

Boontiam W, Jung B, Kim YY. Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens, Poultry Science. 2017; 96(3): 593-601. DOI:https://doi.org/10.3382/ps/pew269.

Tan HS, Zulkifli I, Farjam AS, Goh YM, Croes E. Partha SK, Tee AK. Effect of exogenous emulsifier on growth performance, fat digestibility, apparent metabolisable energy in broiler chickens. Journal of Biochemistry, Microbiology and Biotechnology. 2016; 4(1):7-10. DOI: https://doi.org/10.54987/jobimb.v4i1.281

Publicado

2023-07-13

Como Citar

OLIVEIRA, M. V. de; LEANDRO, N. S.; CAFÉ, M. B.; SANTOS, R. R. dos; JACOB, D. V.; PIRES, M. F. Adição de emulsificante nas rações de frangos de corte com redução dos níveis de energia metabolizável. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 24, 2023. DOI: 10.1590/1809-6891v24e-75526E. Disponível em: https://revistas.ufg.br/vet/article/view/75526. Acesso em: 24 mar. 2025.

Edição

Seção

ZOOTECNIA