Fator de crescimento e diferenciação – 9 (GDF-9) aumenta a taxa de crescimento in vitro de folículos antrais iniciais caprinos isolados

Autores

DOI:

https://doi.org/10.1590/1809-6891v24e-74980E

Resumo

Este estudo teve como objetivo investigar o efeito do GDF-9 durante o cultivo in vitro de folículos antrais iniciais caprinos isolados. Os folículos antrais iniciais isolados e selecionados foram cultivados individualmente por 18 dias, e os seguintes tratamentos foram testados: α MEM+ (tratamento controle) ou α-MEM+ suplementado com 200 ng/mL de GDF-9 (tratamento GDF-9). Os seguintes parâmetros foram avaliados: crescimento e morfologia folicular, produção de estradiol, maturação nuclear do oócito e expressão relativa de genes-chave relacionados a esteroidogênese (CYP19A1, CYP17 e receptor de insulina) e remodelamento da membrana basal (MMP-9 e TIMP-2). Em ambos os tratamentos, observou-se diminuição na porcentagem de folículos morfologicamente intactos com aumento concomitante nas taxas de folículos extrusos e degenerados (P < 0,05). O tratamento GDF-9 apresentou maiores taxas de folículos extrusos apenas no 6º dia de cultivo (P < 0,05). O diâmetro do folículo aumentou progressivamente ao longo do período de cultivo (P < 0,05) com diâmetros semelhantes entre os tratamentos em todos os tempos de cultivo (P > 0,05). O GDF-9 aumentou a taxa de crescimento diário do primeiro para o segundo terço de cultivo, sendo maior (P < 0,05) que o controle no segundo terço. A taxa de maturação oocitária assim como os níveis de estradiol e a expressão relativa de RNAm para os genes CYP19A1, CYP17, MMP-9, TIMP-2 e receptor de insulina foram similares entre os tratamentos (P > 0,05). Em conclusão, este estudo mostra pela primeira vez que GDF-9 adicionado a um meio de cultivo aumentou a taxa de crescimento de folículos antrais iniciais caprinos cultivados in vitro.
Palavras-chave: cultivo in vitro; folículo antral; cabra; GDF-9

Downloads

Não há dados estatísticos.

Referências

Sá NAR, Araújo VR, Correia HHV, Ferreira ACA, Guerreiro DD, Sampaio AM, et al. Anethole improves the in vitro development of isolated caprine secondary follicles. Theriogenology. 2017;1(89):226–34. https://doi.org/10.1016/j.theriogenology.2015.12.014

Sá NAR, Ferreira ACA, Sousa FGC, Duarte ABG, Paes VM, Cadenas J, et al. First pregnancy after in vitro culture of early antral follicles in goats: Positive effects of anethole on follicle development and steroidogenesis. Mol Reprod Dev. 2020;87(9):966–77. https://doi.org/10.1002/mrd.23410

Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13(6):1035–48. https://doi.org/10.1210/mend.13.6.0310

Silva JRV, Van Den Hurk R, Van Tol HTA, Roelen BAJ, Figueiredo JR. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol Reprod Dev. 2005;70(1):11–9. https://doi.org/10.1002/mrd.20127

Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJW, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;87(1):316–21. https://doi.org/10.1210/jcem.87.1.8185

Martins FS, Celestino JJH, Saraiva MVA, Matos MHT, Bruno JB, Rocha CMC, et al. Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles. Reprod Fertil Dev. 2008;20(8):916–24. https://doi.org/10.1071/RD08108

Cook-Andersen H, Curnow KJ, Su HI, Chang RJ, Shimasaki S. Growth and differentiation factor 9 promotes oocyte growth at the primary but not the early secondary stage in three-dimensional follicle culture. J Assist Reprod Genet. 2016;33(8):1067–77. https://doi.org/10.1007/s10815-016-0719-z

Almeida AP, Saraiva MVA, Araújo VR, Magalhães DM, Duarte ABG, Frota IMA, et al. Expression of growth and differentiation factor 9 (GDF-9) and its effect on the in vitro culture of caprine preantral ovarian follicles. Small Rumin Res. 2011;100(2–3):169–76. https://doi.org/10.1016/j.smallrumres.2011.06.001

Chaves RN, Martins FS, Saraiva MVA, Celestino JJH, Lopes CAP, Correia JC, et al. Chilling ovarian fragments during transportation improves viability and growth of goat preantral follicles cultured in vitro. Reprod Fertil Dev. 2008;20(5):640–7. https://doi.org/10.1071/RD07195

Cadenas J, Leiva-Revilla J, Vieira LA, Apolloni LB, Aguiar FLN, Alves BG, et al. Caprine ovarian follicle requirements differ between preantral and early antral stages after IVC in medium supplemented with GH and VEGF alone or in combination. Theriogenology. 2017;87:321–32. https://doi.org/10.1016/j.theriogenology.2016.09.008

Cadenas J, Maside C, Ferreira ACA, Vieira LA, Leiva-Revilla J, Paes VM, et al. Relationship between follicular dynamics and oocyte maturation during in vitro culture as a non-invasive sign of caprine oocyte meiotic competence. Theriogenology. 2018;107:95–103. https://doi.org/10.1016/j.theriogenology.2017.10.038

Jiatsa Donfack N, Alves KA, Alves BG, Pedrosa Rocha RM, Bruno JB, Lobo CH, et al. Xenotransplantation of goat ovary as an alternative to analyse follicles after vitrification. Reprod Domest Anim. 2019;54(2):216–24. https://doi.org/10.1111/rda.13340

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262

Ferreira ACA, Cadenas J, Sá NAR, Correia HHV, Guerreiro DD, Lobo CH, et al. In vitro culture of isolated preantral and antral follicles of goats using human recombinant FSH: Concentration-dependent and stage-specific effect. Anim Reprod Sci. 2018;196:120–9. https://doi.org/10.1016/j.anireprosci.2018.07.004

Campos LB, Silva AM, Praxedes ÉCG, Bezerra LGP, Freitas JLS, Melo LM, et al. Effect of growth differentiation factor 9 (GDF-9) on in vitro development of collared peccary preantral follicles in ovarian tissues. Anim Reprod Sci. 2021;226:106717. https://doi.org/10.1016/j.anireprosci.2021.106717

Dipaz-Berrocal DJ, Sá NAR, Guerreiro DD, Celestino JJH, Leiva-Revilla J, Alves BG, et al. Refining insulin concentrations in culture medium containing growth factors BMP15 and GDF9: An in vitro study of the effects on follicle development of goats. Anim Reprod Sci. 2017;185:118–27. https://doi.org/10.1016/j.anireprosci.2017.08.011

Chaves RN, Duarte ABG, Rodrigues GQ, Celestino JJH, Silva GM, Lopes CAP, et al. The Effects of Insulin and Follicle-Simulating Hormone (FSH) During In vitro Development of Ovarian Goat Preantral Follicles and the Relative mRNA Expression for Insulin and FSH Receptors and Cytochrome P450 Aromatase in Cultured Follicles1. Biol Reprod. 2012;87(3):1–11. https://doi.org/10.1095/biolreprod.112.099010

Ferreira ACA, Maside C, Sá NAR, Guerreiro DD, Correia HHV, Leiva-Revilla J, et al. Balance of insulin and FSH concentrations improves the in vitro development of isolated goat preantral follicles in medium containing GH. Anim Reprod Sci. 2016;165:1–10. https://doi.org/10.1016/j.anireprosci.2015.10.010

Peralta MB, Baravalle ME, Belotti EM, Stassi AF, Salvetti NR, Ortega HH, et al. Involvement of Matrix Metalloproteinases and their Inhibitors in Bovine Cystic Ovarian Disease. J Comp Pathol. 2017;156(2–3):191–201. https://doi.org/10.1016/j.jcpa.2016.10.012

Huang Q, Cheung AP, Zhang Y, Huang HF, Auersperg N, Leung PCK. Effects of growth differentiation factor 9 on cell cycle regulators and ERK42/44 in human granulosa cell proliferation. Am J Physiol Endocrinol Metab. 2009;296(6):1344-53. https://doi.org/10.1152/ajpendo.90929.2008

Farkas S, Szabó A, Hegyi AE, Török B, Fazekas CL, Ernszt D, Kovács T, Zelena D. Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines. 2022;10(4):861. https://doi.org/10.3390/biomedicines10040861

Publicado

2023-08-14

Como Citar

SANTOS, A. L. da C.; FERREIRA, A. C.; SÁ, N.; SILVA, R.; QUISPE-PALOMINO, G.; LOPES, E.; CADENAS, J.; ALVES, B.; CELESTINO, J.; RODRIGUES, A. P.; FIGUEIREDO, J. R. Fator de crescimento e diferenciação – 9 (GDF-9) aumenta a taxa de crescimento in vitro de folículos antrais iniciais caprinos isolados. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 24, 2023. DOI: 10.1590/1809-6891v24e-74980E. Disponível em: https://revistas.ufg.br/vet/article/view/74980. Acesso em: 2 jan. 2025.

Edição

Seção

MEDICINA VETERINÁRIA