Elucidando a imunovigilância e imunoedição tumoral: uma revisão abrangente

Autores

DOI:

https://doi.org/10.1590/1809-6891v22e-68544

Resumo

A ação do sistema imunológico contra as enfermidades neoplásicas tem se tornado uma das principais fontes de pesquisa na atualidade. As vias biológicas desse sistema são conhecidas por contribuir na limitação da progressão e na eliminação do tumor, e são delineadas por conceitos e mecanismos de imunovigilância e imunoedição. A imunovigilância é considerada o processo pelo qual o sistema imunológico reconhece e inibe o processo neoplásico. O conceito de imunoedição tem origem no sentido de que o sistema imune é capaz de moldar o perfil antigênico do tumor devido à pressão seletiva, baseada nas etapas de eliminação, equilíbrio e evasão tumoral. A resposta imunológica ocorre contra antígenos tumorais e modificações do microambiente tumoral, envolvendo diferentes componentes do sistema imune inato, como células T, células natural Killer, linfócitos B e macrófagos. Nesse sentido, conhecer esses conceitos e compreender seus respectivos mecanismos torna-se essencial na investigação de novas estratégias de prevenção e combate ao câncer. Dessa forma, esta revisão apresenta aspectos históricos e definições de imunovigilância e imunoedição tumoral, com ênfase em sua importância e aplicabilidade, assim como aos diferentes métodos utilizados em imunoterapia.
Palavras-chave: imunocompetência; imunologia tumoral; imunoterapia; progressão tumoral; sistema imune

Downloads

Não há dados estatísticos.

Referências

Abbas AK, Lichtman A, Pillai S. Cellular and Molecular Immunology. 9th ed. Philadelphia: Elsevier Saunders; 2017. 608 p.

Galon J, Angell HK, Bedognetti D, Marincola FM. The Continuum of Cancer Immunosurveillance: Prognostic, Predictive, and Mechanistic Signatures. Immunity. 2013;39(1):11–26.

Mackay IR. Travels and travails of autoimmunity: A historical journey from discovery to rediscovery. Autoimmun Rev. 2010;9(5):251–258.

Male DK, Peebles RS., Male V. Immunology. 9th ed. Philadelphia: Elsevier Saunders; 2020. 432 p.

Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–998.

Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

Garg AD, Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280(1):126–148.

Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1–14.

Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: A comprehensive review. Expert Rev Clin Immunol. 2014;10(1):41–62.

Fehniger TA, Cooper MA. Harnessing NK Cell Memory for Cancer Immunotherapy. Trends Immunol. 2016;37(12):877–888.

Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017;168(3):487–502.

Ribatti D. The concept of immune surveillance against tumors: The first theories. Oncotarget. 2015;8(5):7175–7180.

Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, et al. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther. 2017;18(7):451–469.

Jinushi M, Komohara Y. Tumor-associated macrophages as an emerging target against tumors: Creating a new path from bench to bedside. Biochim Biophys Acta - Rev Cancer. 2015;1855(2):123–130.

Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172(5):1022-1037.

Dyck L, Lynch L. New Job for NK Cells: Architects of the Tumor Microenvironment. Immunity. 2018;48(1):9–11.

Hunter KW, Amin R, Deasy S, Ha NH, Wakefield L. Genetic insights into the morass of metastatic heterogeneity. Nat Rev Cancer. 2018;18(4):211–223.

Cullen SP, Brunet M, Martin SJ. Granzymes in cancer and immunity. Cell Death Differ. 2010;17(4):616–623.

Law RHP, Lukoyanova N, Voskoboinik I, Caradoc-Davies T, Baran K, Dunstone MA, et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature. 2010;468(7322):447–451.

Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, et al. IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat Commun [Online]. 2017 [Cited 2021 Feb 15];8:14607. Available from: https://doi.org/10.1038/ncomms14607. English.

Notarangelo LD, Kim MS, Walter JE, Lee YN. Human RAG mutations: Biochemistry and clinical implications. Nat Rev Immunollogy. 2016;16(4):234-246.

Ru H, Mi W, Zhang P, Alt FW, Schatz DG, Liao M, et al. DNA melting initiates the RAG catalytic pathway. Nat Struct Mol Biol. 2018;25(8):732–742.

Efremova M, Rieder D, Klepsch V, Charoentong P, Finotello F, Hackl H, et al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nat Commun [Online]. 2018 [Cited 2021 Feb 20];9(1):32. Available from: https://doi.org/10.1038/s41467-017-02424-0. English.

Zitvogel L, Pietrocola F, Croemer G. Nutrition, inflammation and cancer. Nat Immunollogy. 2017;18(8):843–850.

Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Al. E. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35:78–103.

Morrow ES, Roseweir A, Edwards J. The role of gamma delta T lymphocytes in breast cancer: a review. Transl Cancer Res. 2019;203:88–96.

Palucka AK, Coussens LM. The Basis of Oncoimmunology. Cell. 2016;164(6):1233–1247.

Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3(6):575–582.

Nagarsheth N, Wisha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunollogy. 2017;17(9):559–572.

Ayroldi E, Cannarile L, Delfino DV, Riccardi C. A dual role for glucocorticoid-induced leucine zipper in glucocorticoid function: Tumor growth promotion or suppression? review-article. Cell Death Dis. [Online]. 2018 [Cited 2021 Mar 12];9(5):463. Available from: https://doi.org/10.1038/s41419-018-0558-1. English.

Strioga M, Schijns V, Powell Jr DJ, Pasukoniene, V. Dobrovolskiene N, Michalek K. Dendritic cells and their role in tumor immunosurveillance. Innate Immun. 2017;19(1):98–111.

Yao Y, Chen S, Cao M, Fan X, Yang T, Huang Y, et al. Antigen-specific CD8+ T cell feedback activates NLRP3 inflammasome in antigen-presenting cells through perforin. Nat Commun [Online]. 2017 [Cited 2021 Feb 22];8:e15402. Available from: https://doi.org/ 10.1038/ncomms15402. English.

Caswell DR, Swanton C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med [Onlinel. 2017 [Cited 2021 Jan 30];15(1):1–9.Available from: https://doi.org/10.1186/s12916-017-0900-y. English.

Valent P, Bonnet D, Wöhrer S, Andreeff M, Copland M, Chomienne C, et al. Heterogeneity of neoplastic stem cells: Theoretical, functional, and clinical implications. Cancer Res. 2013;73:1037–1045.

Mohme M. Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155–167.

Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012;72(13):3125–3130.

Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;35(Suppl):S199–223.

Chiarugi P, Cirri P. Metabolic exchanges within tumor microenvironment. Cancer Lett. 2016;380(1):272–280.

Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and Anticancer Immunosurveillance. Cell. 2016;165(2):276–287.

Finn OJ. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Ann Oncology [Online]. 2012 [Cited 2021 Mar 21];23(suppl8):viii6-9. Available from: https://doi.org/10.1093/annonc/mds256. English

Pancione M, Giordano G, Remo A, Febbraro A, Sabatino L, Manfrin E, et al. Immune escape mechanisms in colorectal cancer pathogenesis and liver metastasis. J Immunol Res.[Online]. 2014 [Cited 2021 Feb 24];2014:e686879. Available from: https://doi.org/10.1155/2014/686879. English.

Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med.[Online]. 2018 [Cited 2020 Dec 22];50(8):109. Available from: https://doi.org/10.1038/s12276-018-0130-1. English.

Song W, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials. 2017;148:16–30.

Maeda S, Murakami K, Inoue A, Yonezawa T, Matsuki N. CCR4 blockade depletes regulatory T cells and prolongs survival in a canine model of bladder cancer. Cancer Immunol Res. 2019;7(7):1175–1187.

Konduri V, Halpert MM, Baig YC, Coronado R, Rodgers JR, Levitt JM, et al. Dendritic cell vaccination plus low-dose doxorubicin for the treatment of spontaneous canine hemangiosarcoma. Cancer Gene Ther. 2019;26(9–10):282–291.

Ramos-Zayas Y, Franco-Molina MA, Hernádez-Granados AJ, Zárate-Triviño DG, Coronado-Cerda EE, Mendoza-Gamboa E, et al. Immunotherapy for the treatment of canine transmissible venereal tumor based in dendritic cells pulsed with tumoral exosomes. Immunopharmacol Immunotoxicol. 2019;41(1):48–54.

Hoopes PJ, Wagner RJ, Duval K, Kang K, Gladstone DJ, Moodie KL, et al. Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation. Mol Pharm. 2018;15(9):3717–3722.

O’Connor CM, Sheppard S, Hartline CA, Huls H, Johnson M, Palla SL, et al. Adoptive T-cell therapy improves treatment of canine non-Hodgkin lymphoma post chemotherapy. Scientific Reports [Online]. 2012 [Cited 2021 Jan 10];2(1):249. Available from: https://doi.org/10.1038/srep00249. English.

Li Y, Sun Y, Kulke M, Hechler T, Van der Jeught K, Dong T, et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci Transl Med. [Online] 2021[Cited 2021 Mar 18];13(580):eabc6894. Available from: https://doi.org/10.1126/scitranslmed.abc6894. English.

Krieg C, Létourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A. 2010;107(26):11906–11911.

Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–647.

Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.

Maekawa N, Konnai S, Takagi S, Kagawa Y, Okagawa T, Nishimori A, et al. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Scientific Reports [Online]. 2017 [Cited 2021 Mar 18];7(1):1–12. Available from: https://doi.org/10.1038/s41598-017-09444-2. English.

Alsaab HO, Sau S, Alzhrani RT, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Frontiers in Pharmacology [Online]. 2017 [Cited 2021 Feb 19]; 8:561. Available from: https://doi.org/10.3389/fphar.2017.00561. English.

Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E, et al. Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies. Cancer Cell [Online]. 2018 [Cited 2021 Mar 02];33(4):649-663.e4. Available from: https://doi.org/10.1016/j.ccell.2018.02.010. English.

Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams MP, et al. PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res. 2015;3(6):610–619.

Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018;29(1):84–91.

Pavlin D, Cemazar M, Sersa G, Tozon N. IL-12 based gene therapy in veterinary medicine. J Transl Med. [Online]. 2012 [Cited 2021 Mar 21];10(1):234. Available from: https://doi.org/10.1186/1479-5876-10-234. English.

Judge SJ, Darrow MA, Thorpe SW, Gingrich AA, O’Donnell EF, Bellini AR, et al. Analysis of tumor-infiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas. J Immunother Cancer [Online]. 2020 [Cited 2021 Feb 17];8:e001355. Available from: https://doi.org/10.1136/jitc-2020-001355. English.

Frampton D, Schwenzer H, Marino G, Butcher LM, Pollara G, Kriston-Vizi J, et al. Molecular Signatures of Regression of the Canine Transmissible Venereal Tumor. Cancer Cell. 2018;33(4):620-633.

Bujak JK, Pingwara R, Nelson MH, Majchrzak K. Adoptive cell transfer: New perspective treatment in veterinary oncology. Acta Vet Scand. [Online]. 2018 [Cited 2021 Feb 17];60(1):60. Available from: https://doi.org/10.1186/s13028-018-0414-4. English.

Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.

Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P. Tumor immunology and cancer immunotherapy: Summary of the 2013 SITC primer. J Immunother Cancer. 2014;2(1):2–14.

Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S. Teaching an old dog new tricks: next-generation CAR T cells. Br J Cancer. 2019;120(1):26–37.

Mata M, Vera JF, Gerken C, Rooney CM, Miller T, Pfent C, et al. Toward immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells. J Immunother. 2014;37(8):407–415.

Panjwani MK, Atherton MJ, MaloneyHuss MA, Haran KP, Xiong A, Gupta M, et al. Establishing a model system for evaluating CAR T cell therapy using dogs with spontaneous diffuse large B cell lymphoma. Oncoimmunology [Online]. 2020 [Cited 2021 Feb 17];9(1):1676615.Available from: https://doi.org/10.1080/2162402X.2019.1676615. English.

Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic viruses for canine cancer treatment. Cancers [Online]. 2018 [Cited 2021 Feb 25]; 10(11):404. Available from: https://doi.org/10.3390/cancers10110404. English.

Iizuka K, Shoji K, Fujiyuki T, Moritoh K, Tamura K, Yoshida A, et al. Antitumor activity of an oncolytic measles virus against canine urinary bladder transitional cell carcinoma cells. Res Vet Sci. 2020;133:313–317.

Igase M, Shibutani S, Kurogouchi Y, Fujiki N, Hwang CC, Coffey M, et al. Combination Therapy with Reovirus and ATM Inhibitor Enhances Cell Death and Virus Replication in Canine Melanoma. Mol Ther - Oncolytics. 2019;15:49–59.

Naik S, Galyon GD, Jenks NJ, Steele MB, Miller AC, Allstadt SD, et al. Comparative oncology evaluation of intravenous recombinant oncolytic vesicular stomatitis virus therapy in spontaneous canine cancer. Mol Cancer Ther. 2018;17(1):316-326.

Ilyinskaya GV, Mukhina EV, Soboleva AV, Matveeva OV, Chumakov PM. Oncolytic sendai virus therapy of canine mast cell tumors (A pilot study). Front Vet Sci. [Online]. 2018 [Cited 2021 Feb 16];5:116. Available from: https://doi.org/10.3389/fvets.2018.00116. English.

Klingemann H. Immunotherapy for Dogs: Running Behind Humans. Front Immunol. [Online]. 2018 [Cited 2021 Feb 19];9:133. Available from: https://doi.org/10.3389/fimmu.2018.00133. English.

Goodrich RP, Weston J, Hartson L, Griffin L, Guth A. Pilot Acute Safety Evaluation of InnocellTM Cancer Immunotherapy in Canine Subjects. J Immunol Research [Online]. 2020 [Cited 2021 Mar 01];2020:7142375. Available from: https://doi.org/10.1155/2020/7142375. English.

Lucroy MD, Clauson RM, Suckow MA, El-Tayyeb F, Kalinauskas A. Evaluation of an autologous cancer vaccine for the treatment of metastatic canine hemangiosarcoma: a preliminary study. BMC Vet Research [Online]. 2020 [Cited 2021 Mar 12];16(1):447. Available from: https://doi.org/10.1186/s12917-020-02675-y. English.

Musser ML, Berger EP, Tripp CD, Clifford CA, Bergman PJ, Johannes CM. Safety evaluation of the canine osteosarcoma vaccine, live Listeria vector. Vet Comp Oncol. 2021;19(1):92–98.

Kurupati RK, Zhou X, Xiang Z, Keller LH, Ertl HCJ. Safety and immunogenicity of a potential checkpoint blockade vaccine for canine melanoma. Cancer Immunol Immunother. 2018;67(10):1533–1544.

Impellizeri JA, Gavazza A, Greissworth E, Crispo A, Montella M, Ciliberto G, et al. Tel-eVax: A genetic vaccine targeting telomerase for treatment of canine lymphoma. J Transl Med. [Online] 2018 [Cited 2021 Feb 19];16(1):349. Available from: https://doi.org/10.1186/s12967-018-1738-6. Englidh.

Thalmensi J, Pliquet E, Liard C, Chamel G, Kreuz C, Bestetti T, et al. A DNA telomerase vaccine for canine cancer immunotherapy. Oncotarget. 2019;10(36):3361–3372.

Chung S, Lin YL, Reed C, Ng C, Cheng ZJ, Malavasi F, et al. Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - Impact of effector cells. J Immunol Methods. 2014;407:63–75.

Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Molecular Biology Reports. 2018; 45:2935–2940.

Singer J, Jensen-Jarolim E. IgE-based immunotherapy of cancer: Challenges and chances. Allergy Eur J Allergy Clin Immunol. 2014;69(2):137–149.

Lisowska M, Pawlak A, Kutkowska J, Hildebrand W, Ugorski M, Rapak A, et al. Development of novel monoclonal antibodies to dog leukocyte antigen DR displaying direct and immune-mediated cytotoxicity toward canine lymphoma cell lines. Hematol Oncol. 2018;36(3):554–560.

Mizuno T, Kato Y, Kaneko MK, Sakai Y, Shiga T, Kato M, et al. Generation of a canine anti-canine CD20 antibody for canine lymphoma treatment. Scientific Reports [Online]. 2020 [Cited 2021 Mar 11];10(1):11476. Available from: https://doi.org/10.1038/s41598-020-68470-9. English.

Kamoto S, Shinada M, Kato D, Yoshimoto SI, Tsuboi M, Yoshitake R, et al. Phase I/II Clinical Trial of the Anti-Podoplanin Monoclonal Antibody Therapy in Dogs with Malignant Melanoma. Cells [Online]. 2020 [Cited 2021 Mar 12];9(11):2529. Available from: https://doi.org/10.3390/cells9112529. English.

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017;168(4):707–723.

Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discovery Today. 2012; 17 (17-18):1044–1052.

Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. Journal of Drug Targeting. 2016; 24(3):179–191.

Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what’s new in cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology [Online]. 2017 [Cited 2021 Feb 16]; 9(1):e1421. Available from: https://doi.org/10.1002/wnan.1421. English.

Chariou PL, Beiss V, Ma Y, Steinmetz NF. In situ vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy . Mater Adv. 2021;2(5):1644–1656.

Chiang CS, Lin YJ, Lee R, Lai Y., Cheng HW, Hsieh CH, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol. 2018;13(8):746–754.

Sayour EJ, Grippin A, De Leon G, Stover B, Rahman M, Karachi A, et al. Personalized Tumor RNA Loaded Lipid-Nanoparticles Prime the Systemic and Intratumoral Milieu for Response to Cancer Immunotherapy. Nano Lett. 2018;18(10):6195–6206.

Publicado

2021-07-23

Como Citar

SILVA, E. V. de S.; NASCENTE, E. de P. .; MIGUEL, M. P.; ALVES, C. E. F.; MOURA, V. M. B. D. de. Elucidando a imunovigilância e imunoedição tumoral: uma revisão abrangente. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 22, 2021. DOI: 10.1590/1809-6891v22e-68544. Disponível em: https://revistas.ufg.br/vet/article/view/68544. Acesso em: 22 dez. 2024.

Edição

Seção

MEDICINA VETERINÁRIA