Efeitos de diferentes estratégias de restrição alimentar sobre as concentrações de hormônios, metabólitos e minerais de machos Holandês × Zebu não castrados em terminação

Autores

DOI:

https://doi.org/10.1590/1809-6891v21e-63329

Resumo

Objetivou-se avaliar os efeitos de diferentes estratégias de alimentação restrita sobre as concentrações sanguíneas de hormônios, metabólitos e minerais de machos Holandês × Zebu castrados em terminação. Vinte machos Holandês × Zebu castrados (peso corporal inicial [PC] = 319 ± 16,2 kg; idade = 19 ± 1 meses) foram aleatoriamente distribuídos em 4 grupos de 5 animais, os quais receberam alimentação restrita a 85% do consumo ad libitum por 0 (R0; n=5), 28 (R28; n=5), 42 (R42; n=5) ou 84 (R84; n=5) dias. Os animais foram alojados individualmente e considerados como unidades experimentais. Amostras de sangue foram coletadas nos dias 0, 21, 42 e 84, e analizadas quanto às concentrações de fator de crescimento semelhante à insulina 1 (IGF-1), hormônios tireiodianos (T3 e T4), albumina, creatinina, ureia, proteína total, glicose, triglicerídeos, cálcio e fósforo. Animais que receberam alimentação restrita apresentaram aumento nas concentrações de IGF-1 até o dia 42 (P < 0,05). Animais R84 apresentaram as maiores (P < 0,05) concentrações de IGF-1 no dia 84. As concentrações de ureia foram maiores (P < 0,05) para os animais AL84 e menores (P < 0,05) para os animais R28; os animais R42 e R84 apresentaram valores intermediários e não diferentes (P > 0,05) entre si. As concentrações de IGF-1, ureia, albumina, e calcium, mas não as de T3, T4, glicose, triglicerídeos, creatinina, proteína total e fósforo, foram influencias pelas diferentes estratégias de alimentação restrita utilizadas em machos Holandês × Zebu castrados em terminação.
Palavras-chave: Balanço Mineral; Bovinos Cruzados; Consumo Alimentar Restrito

Downloads

Não há dados estatísticos.

Referências

Galyean ML. Review: Restricted and programmed feeding of beef cattle-definitions, application, and

research results. PAS. 1999; 15:1–6.

Carstens GE, Johnson DE, Ellenberger MA, Tatum JD. Physical and chemical components of the empty

body during compensatory growth in beef steers. J Anim Sci. 1991; 69:3251–64.

Hornick JL, Van Eenaeme C, Diez M, Minet V, Istasse L. Different periods of feed restriction before

compensatory growth in Belgian Blue bulls: II. Plasma metabolites and hormones. J Anim Sci. 1998;

:260–71.

Felix TL, Radunz AE, Loerch SC. Effects of limit feeding corn or dried distillers grains with solubles at

intakes during the growing phase on the performance of feedlot cattle. J Anim Sci. 2011; 89:2273–79.

Hornick JL, Van Eenaeme C, Gérard O, Dufrasne I, Istasse L. Mechanisms of reduced and compensatory

growth. Domest Anim Endocrinol. 2000; 19:121–32.

Wilson PN, Osbourn DF. Compensatory growth after undernutrition in mammals and birds. Biol Rev.

; 35:324–61.

Mahyuddin, P. Compensatory growth in ruminants. Anim Prod. 2004; 6:125–35.

Ellenberger MA, Johnson DE, Carstens GE, Hossner KL, Holland MD, Nett TM, Nockels CF. Endocrine and

metabolic changes during altered growth rates in beef cattle. J Anim Sci. 1989; 67:1446–54.

Yambayamba ES, Price MA, Foxcroft GR. Hormonal status, metabolic changes, and resting metabolic

rate in beef heifers undergoing compensatory growth. J Anim Sci. 1996; 74:57–69.

Keogh K, Waters SM, Kelly AK, Wylie A RG, Sauerwein H, Sweeney T, Kenny DA. Feed restriction and

realimentation in Holstein-Friesian bulls: II. Effect on blood pressure and systemic concentrations of

metabolites and metabolic hormones. J Anim Sci. 2015; 93:3590–3601.

Keogh K, Waters SM, Kelly AK, Kenny DA. Feed restriction and subsequent realimentation in Holstein

Friesian bulls: I. Effect on animal performance; muscle, fat, and linear body measurements; and slaughter

characteristics. J Anim Sci. 2015; 93:3578–89.

Silva FAS, Valadares Filho SC, Godoi LA, Silva BC, Pacheco MVC, Zanetti D, Benedeti PDB, Silva FF,

Felix TL. Effect of duration of restricted-feeding on nutrient excretion, animal performance, and carcass

characteristics of Holstein × Zebu finishing steers. Anim Prod Sci. 2020; 60:535–544.

Valadares Filho SC, Costa e Silva LF, Gionbelli MP, Rotta PP, Marcondes MI, Chizzotti ML, Prados

LF. Nutrient Requirements of Zebu and Crossbred Cattle - BR-CORTE. 3rd ed. Visconde do Rio Branco:

Suprema Gráfica Ltda.; 2016. 314p. English.

Hoch T, Begon C, Picard B. Mécanismes et conséquences de la croissance compensatrice chez les

ruminants. INRA Prod Anim. 2003; 16:49–59.

Hayden JM, Williams JE, Collier RJ. Plasma growth hormone, insulin-like growth factor, insulin, and

thyroid hormone association with body protein and fat accretion in steers undergoing compensatory

gain after dietary energy restriction. J Anim Sci. 1993; 71:3327-3338.

Blum J W, Schnyder W, Kunz PL, Blom AK, Bickel H, Schürch A. Reduced and compensatory growth:

Endocrine and metabolic changes during food restriction and refeeding in steers. J Nutr. 1985; 115:417–

Breier BH. Regulation of protein and energy metabolism by the somatotropic axis. Domest Anim

Endocrinol. 1999; 17:209–18.

Hossner KL. Hormonal regulation of farm animal growth. Cambridge: CABI Publishing; 2005. 240p.

English.

Preston R, Schnakenberg D, Pfander W. Protein utilization in ruminants: I. Blood urea nitrogen as

affected by protein intake. J Nutr. 1965; 86:281–88.

Kohn RA, Dinneen MM, Russek-Cohen E. Using blood urea nitrogen to predict nitrogen excretion and

efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J Anim Sci. 2005; 83:879–89.

Russell KE, Roussel AJ. Evaluation of the ruminant serum chemistry profile. Vet Clin North Am Food

Anim Pract. 2007; 23:403–26.

Kaneko JJ, Harvey JW, Bruss ML. Clinical biochemistry of domestic animals. 6th ed. San Diego: Academic

Press; 2008. 928p. English.

Bass JJ, Oldham JM, Hodgkinson SC, Fowke PJ, Sauerwein H, Molan P, Breier BH, Gluckman PD. Influence

of nutrition and bovine growth hormone (GH) on hepatic GH binding, insulin-like growth factor-I and

growth of lambs. J Endocrinol. 1991; 128:181–86.

Mcguire MA, Vicini JL, Bauman DEP, Veenhuizent JJ. Insulin-like growth factors and binding proteins in

ruminants and their nutritional regulation. J Anim Sci. 1992; 70:2901–10.

Ronge H, Blum J. Insulin-like growth factor I responses to recombinant bovine growth hormone during

feed restriction in heifers. Acta Endocrinol. 1988; 120:735–44.

Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meatproducing

mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol.

; 27:219–240.

Rowlands GJ. A review of variations in the concentration of metabolites in the blood of beef and dairy

cattle associated with physiology, nutrition and disease, with particular reference to the interpretation of

metabolic profiles. World Rev Nutr Diet. 1980; 35:172–235.

Reinhardt TA, Horst RL, Goff JP. Calcium, phosphorus, and magnesium homeostasis in ruminants. Vet

Clin North Am Food Anim Pract. 1988; 4:331–50.

NRC. Nutrient requirements of beef cattle. 7th ed. Washington: Nat. Acad. Press; 2000. 248p. English.

Berchielli TT, Pires AV, Oliveira SG. Nutrição de Ruminantes. 2nd ed. Jaboticabal: Editora Funep; 2011.

p. Portuguese.

ages and stages of lactation. Can J Vet Res. 1988; 52:99–105.

McDowell LR. Minerals in Animal and Human Nutrition. 2nd ed. Amsterdam: Elsevier; 2003. 660p.

English.

Eisemann JH, Huntington GB, Catherman DR. Insulin sensitivity and responsiveness of portal-drained

viscera, liver, hindquarters, and whole body of beef steers weighing 275 or 490 kilograms. J Anim Sci.

; 75:2084–91.

Radunz AE, Fluharty FL, Relling AE, Felix TL, Shoup LM, Zerby HN, Loerch S C. Prepartum dietary

energy source fed to beef cows: II. Effects on progeny postnatal growth, glucose tolerance, and carcass

composition. J Anim Sci. 2012; 90:4962–74.

Kleiber M. Body size and metabolic rate. Physiol Rev. 1947; 27:511–41.

Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in

mammals. Physiol Rev. 1997; 77:731–58.

Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane

composition, and life span of animals. Physiol Rev. 2007; 87:1175–1213.

Samuelson KL, Hubbert ME, Galyean ML, Löest CA. Nutritional recommendations of feedlot consulting

nutritionists: The 2015 New Mexico State and Texas Tech University survey. J Anim Sci. 2016; 94, 2648–63.

Ferraz JBS, Felício PE. Production systems - An example from Brazil. Meat Sci. 2010; 84:238–43.

Publicado

2020-10-19

Como Citar

SILVA, F. A. de S.; FILHO, S. de C. V.; RENNÓ, L. N.; TRÓPIA, N. V.; SOUZA, C. W. M.; ALHADAS, H. M.; MAFORT, E. G.; FELIX, T. L. Efeitos de diferentes estratégias de restrição alimentar sobre as concentrações de hormônios, metabólitos e minerais de machos Holandês × Zebu não castrados em terminação. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 21, 2020. DOI: 10.1590/1809-6891v21e-63329. Disponível em: https://revistas.ufg.br/vet/article/view/63329. Acesso em: 21 dez. 2024.

Edição

Seção

ZOOTECNIA