Enterococos resistentes à vancomicina e tetraciclina em carnes cruas e processadas: características fenotipicas e genotipicas

Autores

DOI:

https://doi.org/10.1590/1809-6891v21e-57674

Resumo

A natureza ubíqua dos enterococos e sua capacidade de colonizar diferentes habitats são responsáveis pela sua fácil disseminação pela cadeia alimentar. No presente estudo, avaliamos a distribuição e a susceptibilidade antimicrobiana de isolados de Enterococcus provenientes de produtos cárneos. Cem produtos (carne de frango cru, carne de porco crua e carne cozida) foram adquiridos e cultivados para a presença de Enterococcus spp. No total, 194 amostras foram avaliadas, com taxas de contaminação de 63,6% nas amostras de frango, 31% na carne de porco crua e 1,4% nas amostras de carne cozida. A amplificação por PCR foi realizada para confirmar a presença de Enterococcus spp. (95/96), E. faecalis (66/96), E. faecium (30/96) E. casseliflavus/E. flavescens (3/96). Resultados de susceptibilidade mostraram que 100% dos isolados foram resistentes a pelo menos um antibiótico, sendo 100% de E. faecium resistentes a vancomicina, estreptomicina, ciprofloxacina, norfloxacina, eritromicina e tetraciclina. E. casseliflavus / E. flavescens resistentes a gentamicina, estreptomicina, ciprofloxacina, norfloxacina, eritromicina e tetraciclina. E. faecalis foram resistentes a ciprofloxacina, tetraciclina e eritromicina (92%), norfloxacina (83%), vancomicina e estreptomicina (50%). Na genotipagem, foram detectados os genes tetL e vanB. A presença desses microrganismos resistentes aos antimicrobianos nos alimentos pode causar problemas para a saúde pública.
Palavras-chaves: Antibióticos, enterococci vancomicina-resistante, PCR.

Downloads

Não há dados estatísticos.

Referências

Foka F.E.T., Collins Njie Ateba. Detection of Virulence Genes in Multidrug Resistant Enterococci Isolated from Feedlots Dairy and Beef Cattle: Implications for Human Health and Food Safety. BioMed Research International. 2019; ID 5921840.

Gevers D, Danielsen M, Huys G, Swings J. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Applied. Environmental Microbiology. 2003; 69:1270-1275.

Donabedian SM. et al. Characterization of vancomycin-resistant Enterococcus faecium isolated from Swine in three Michigan counties. J Clin Microbiol. 2010; 48:4156-4160.

Bortolaia V., Espinosa-Gongora C., Guardabassi L.. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect. 2016; 2:130-140.

Hayes JR. et al. Multiple-antibiotic resistance of Enterococcus spp. isolated from commercial poultry production environments. Appl Environ Microbiol, 2004; 70:6005-6011.

Manson AL, Van Tyne D, Straub TJ, Clock S, Crupain M, Rangan U, Gilmore MS, Earl A.M. Influence of agricultural antibiotic use on chicken meat-associated enterococci and their connection to the clinic. Appl Environ Microbiol . 2019; 30: AEM.01559-19.

Leavis HL, Willems RJ. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr Opin Microbiol. 2006; 9:454-460.

Sahlström L. Vancomycin resistant enterococci (VRE) in Swedish sewage sludge. Acta Vet Scan. 2009; 51:01-09.

Werner G. et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008; 13:.1-11.

Gousia P. et al. Antimicrobial resistance of major foodborne pathogens from major meat products. Foodborne Pathog Dis. 2011; 8:27-38.

Rizzotti L., Rossi F., Torriani S. Biocide and antibiotic resistance of Enterococcus faecalis andEnterococcus faecium isolated from the swine meat chain. Food Microbiol. 2016; 60:160-164.

Camargo CH. et al. Prevalence and phenotypic characterization of Enterococcus spp. isolated from food in Brazil. Braz J Microbiol, 2014; 45:111-115.

Campos ACFB. et al. Resistência antimicrobiana em Enterococcus faecalis e Enterococcus faecium isolados de carcaças de frango. Pesqui Vet Bras, 2013; 33: 575-580

Furlaneto-Maia L. et al. Antimicrobial resistance in Enterococcus sp isolated from soft cheese in Southern Brazil. Adv Appl Microbiol 2014; 4:175-181.

Teixeira LM.; FACKLAM RR. (2015) Enterococcus In PR Murray, EJ Baron, JH Jorgensen, MA Pfaller, RH Yolken (eds), Manual of Clinical Microbiology. 11 ed. Washington (DC): American Society for Microbiology, p.422-433. ISBN 978-1-55581-738-1

Dutka-Malen S. et al. Detection of glycopeptides resistance genotypes and identification to the species level of clinically relevant Enterococci by PCR. J Clin Microbiol. 1995; 33:.24-27.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

Harwood VJ. et al. Vancomycin-Resistant Enterococcus spp. Isolated from Wastewater and Chicken Feces in the United States. Appl Environ Microbiol. 2001; 67:4930-4933.

Pesavento G. et al. Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese ready-to-eat salads, ham and raw meat. Food Microbiol. 2014; 41:1-7.

Igbinosa, E.O., Beshiru A. Antimicrobial Resistance, Virulence Determinants, and Biofilm Formation ofEnterococcus Species From Ready-to-Eat Seafood. Front Microbiol. 2019 Apr 18;10:728.

Yogurtcu NN, Tuncer Y. Antibiotic susceptibility patterns of Enterococcus strains isolated from Turkish Tulum cheese. Int. J. Dairy Technol. 2013;66:236-242.

Chajecka-Wierzchowska W. et al. Occurrence and antibiotic resistance of enterococci in ready-to-eat food of animal origin. Afr. J. Microbiol. Res. 2012; 6:6773-6780.

Landeta G. et al. Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Sci. 2013; 95:272-280.

Valenzuela AS. et al. Virulence factors, antibiotic resistance and bacteriocins in enterococci from artisan food of animal origin. Food Control. 2009; 20:381-385.

Diarra MS. et al. Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of Isolates from broiler chickens. Appl Environ Microbiol . 2010; 76:8033-8043.

Cardoso, M. (2019), "Antimicrobial use, resistance and economic benefits and costs to livestock producers in Brazil", OECD Food, Agriculture and Fisheries Papers, No. 135, OECD Publishing, Paris.

Jahan M, Krause DO, Holley R A. Antimicrobial resistance of Enterococcus species from meat and fermented meat products isolated by a PCR-based rapid screening method. Int. J. Food Microbiol. 2013; 163:89-95.

Yüceer Ö, Özden Tuncer B. Determination of antibiotic resistance and biogenic amine production of lactic acid bacteria isolated from fermented Turkish sausage (sucuk) J. Food Safety. 2015;35:276-285.

Rosengren LB. et al. Associations between antimicrobial exposure and resistance in fecal Campylobacter spp. from grow-finish pigs on-farm in Alberta and Saskatchewan. J Food Prot. 2009;72:482-489.

Vignaroli C. et al. Multidrug-resistant enterococci in meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium Curr Microbiol. 2011; 62:1438-1447.

Aslam M. et al. Characterization of antimicrobial resistance and virulence genotypes of Enterococcus faecalis recovered from a pork processing plant. J Food Prot , 2012; 75: 1486-1491.

Terra M.R, Tosoni N.F, Furlaneto M.C, Furlaneto-Maia L. Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix, Journal of Environmental Science and Health, Part B. 2019.

Li S. et al. Vancomycin-resistant enterococci in a chinese hospital. Curr Microbiol , 2007; 55:125-127.

Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2013; 65:.232-260.

Furlaneto-Maia L, Rocha KR, Siqueira VLD, Furlaneto MC. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp. Rev. Inst. Med. Trop. Sao Paul. 2014; 56(2):1-103. Disponível em https://www.researchgate.net/profile/Marcia_Furlaneto/publication/260809626_Comparison_between_automated_system_and_PCR-based_method_for_identification_and_antimicrobial_susceptibility_profile_of_clinical_Enterococcus_spp/links/53f47e0d0cf2fceacc6e83d1/Comparison-between-automated-system-and-PCR-based-method-for-identification-and-antimicrobial-susceptibility-profile-of-clinical-Enterococcus-spp.pdf

» https://www.researchgate.net/profile/Marcia_Furlaneto/publication/260809626_Comparison_between_automated_system_and_PCR-based_method_for_identification_and_antimicrobial_susceptibility_profile_of_clinical_Enterococcus_spp/links/53f47e0d0cf2fceacc6e83d1/Comparison-between-automated-system-and-PCR-based-method-for-identification-and-antimicrobial-susceptibility-profile-of-clinical-Enterococcus-spp.pdf

Publicado

2020-04-22

Como Citar

MAIA, L. F.; GIRALDI, C.; TERRA, M. R.; FURLANETO, M. C. Enterococos resistentes à vancomicina e tetraciclina em carnes cruas e processadas: características fenotipicas e genotipicas. Ciência Animal Brasileira / Brazilian Animal Science, Goiânia, v. 21, 2020. DOI: 10.1590/1809-6891v21e-57674. Disponível em: https://revistas.ufg.br/vet/article/view/57674. Acesso em: 21 dez. 2024.

Edição

Seção

CIÊNCIA E TECNOLOGIA DE ALIMENTOS