Enterococos resistentes à vancomicina e tetraciclina em carnes cruas e processadas: características fenotipicas e genotipicas
DOI:
https://doi.org/10.1590/1809-6891v21e-57674Resumo
A natureza ubíqua dos enterococos e sua capacidade de colonizar diferentes habitats são responsáveis pela sua fácil disseminação pela cadeia alimentar. No presente estudo, avaliamos a distribuição e a susceptibilidade antimicrobiana de isolados de Enterococcus provenientes de produtos cárneos. Cem produtos (carne de frango cru, carne de porco crua e carne cozida) foram adquiridos e cultivados para a presença de Enterococcus spp. No total, 194 amostras foram avaliadas, com taxas de contaminação de 63,6% nas amostras de frango, 31% na carne de porco crua e 1,4% nas amostras de carne cozida. A amplificação por PCR foi realizada para confirmar a presença de Enterococcus spp. (95/96), E. faecalis (66/96), E. faecium (30/96) E. casseliflavus/E. flavescens (3/96). Resultados de susceptibilidade mostraram que 100% dos isolados foram resistentes a pelo menos um antibiótico, sendo 100% de E. faecium resistentes a vancomicina, estreptomicina, ciprofloxacina, norfloxacina, eritromicina e tetraciclina. E. casseliflavus / E. flavescens resistentes a gentamicina, estreptomicina, ciprofloxacina, norfloxacina, eritromicina e tetraciclina. E. faecalis foram resistentes a ciprofloxacina, tetraciclina e eritromicina (92%), norfloxacina (83%), vancomicina e estreptomicina (50%). Na genotipagem, foram detectados os genes tetL e vanB. A presença desses microrganismos resistentes aos antimicrobianos nos alimentos pode causar problemas para a saúde pública.
Palavras-chaves: Antibióticos, enterococci vancomicina-resistante, PCR.
Downloads
Referências
Foka F.E.T., Collins Njie Ateba. Detection of Virulence Genes in Multidrug Resistant Enterococci Isolated from Feedlots Dairy and Beef Cattle: Implications for Human Health and Food Safety. BioMed Research International. 2019; ID 5921840.
Gevers D, Danielsen M, Huys G, Swings J. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Applied. Environmental Microbiology. 2003; 69:1270-1275.
Donabedian SM. et al. Characterization of vancomycin-resistant Enterococcus faecium isolated from Swine in three Michigan counties. J Clin Microbiol. 2010; 48:4156-4160.
Bortolaia V., Espinosa-Gongora C., Guardabassi L.. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect. 2016; 2:130-140.
Hayes JR. et al. Multiple-antibiotic resistance of Enterococcus spp. isolated from commercial poultry production environments. Appl Environ Microbiol, 2004; 70:6005-6011.
Manson AL, Van Tyne D, Straub TJ, Clock S, Crupain M, Rangan U, Gilmore MS, Earl A.M. Influence of agricultural antibiotic use on chicken meat-associated enterococci and their connection to the clinic. Appl Environ Microbiol . 2019; 30: AEM.01559-19.
Leavis HL, Willems RJ. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr Opin Microbiol. 2006; 9:454-460.
Sahlström L. Vancomycin resistant enterococci (VRE) in Swedish sewage sludge. Acta Vet Scan. 2009; 51:01-09.
Werner G. et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008; 13:.1-11.
Gousia P. et al. Antimicrobial resistance of major foodborne pathogens from major meat products. Foodborne Pathog Dis. 2011; 8:27-38.
Rizzotti L., Rossi F., Torriani S. Biocide and antibiotic resistance of Enterococcus faecalis andEnterococcus faecium isolated from the swine meat chain. Food Microbiol. 2016; 60:160-164.
Camargo CH. et al. Prevalence and phenotypic characterization of Enterococcus spp. isolated from food in Brazil. Braz J Microbiol, 2014; 45:111-115.
Campos ACFB. et al. Resistência antimicrobiana em Enterococcus faecalis e Enterococcus faecium isolados de carcaças de frango. Pesqui Vet Bras, 2013; 33: 575-580
Furlaneto-Maia L. et al. Antimicrobial resistance in Enterococcus sp isolated from soft cheese in Southern Brazil. Adv Appl Microbiol 2014; 4:175-181.
Teixeira LM.; FACKLAM RR. (2015) Enterococcus In PR Murray, EJ Baron, JH Jorgensen, MA Pfaller, RH Yolken (eds), Manual of Clinical Microbiology. 11 ed. Washington (DC): American Society for Microbiology, p.422-433. ISBN 978-1-55581-738-1
Dutka-Malen S. et al. Detection of glycopeptides resistance genotypes and identification to the species level of clinically relevant Enterococci by PCR. J Clin Microbiol. 1995; 33:.24-27.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
Harwood VJ. et al. Vancomycin-Resistant Enterococcus spp. Isolated from Wastewater and Chicken Feces in the United States. Appl Environ Microbiol. 2001; 67:4930-4933.
Pesavento G. et al. Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese ready-to-eat salads, ham and raw meat. Food Microbiol. 2014; 41:1-7.
Igbinosa, E.O., Beshiru A. Antimicrobial Resistance, Virulence Determinants, and Biofilm Formation ofEnterococcus Species From Ready-to-Eat Seafood. Front Microbiol. 2019 Apr 18;10:728.
Yogurtcu NN, Tuncer Y. Antibiotic susceptibility patterns of Enterococcus strains isolated from Turkish Tulum cheese. Int. J. Dairy Technol. 2013;66:236-242.
Chajecka-Wierzchowska W. et al. Occurrence and antibiotic resistance of enterococci in ready-to-eat food of animal origin. Afr. J. Microbiol. Res. 2012; 6:6773-6780.
Landeta G. et al. Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Sci. 2013; 95:272-280.
Valenzuela AS. et al. Virulence factors, antibiotic resistance and bacteriocins in enterococci from artisan food of animal origin. Food Control. 2009; 20:381-385.
Diarra MS. et al. Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of Isolates from broiler chickens. Appl Environ Microbiol . 2010; 76:8033-8043.
Cardoso, M. (2019), "Antimicrobial use, resistance and economic benefits and costs to livestock producers in Brazil", OECD Food, Agriculture and Fisheries Papers, No. 135, OECD Publishing, Paris.
Jahan M, Krause DO, Holley R A. Antimicrobial resistance of Enterococcus species from meat and fermented meat products isolated by a PCR-based rapid screening method. Int. J. Food Microbiol. 2013; 163:89-95.
Yüceer Ö, Özden Tuncer B. Determination of antibiotic resistance and biogenic amine production of lactic acid bacteria isolated from fermented Turkish sausage (sucuk) J. Food Safety. 2015;35:276-285.
Rosengren LB. et al. Associations between antimicrobial exposure and resistance in fecal Campylobacter spp. from grow-finish pigs on-farm in Alberta and Saskatchewan. J Food Prot. 2009;72:482-489.
Vignaroli C. et al. Multidrug-resistant enterococci in meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium Curr Microbiol. 2011; 62:1438-1447.
Aslam M. et al. Characterization of antimicrobial resistance and virulence genotypes of Enterococcus faecalis recovered from a pork processing plant. J Food Prot , 2012; 75: 1486-1491.
Terra M.R, Tosoni N.F, Furlaneto M.C, Furlaneto-Maia L. Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix, Journal of Environmental Science and Health, Part B. 2019.
Li S. et al. Vancomycin-resistant enterococci in a chinese hospital. Curr Microbiol , 2007; 55:125-127.
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2013; 65:.232-260.
Furlaneto-Maia L, Rocha KR, Siqueira VLD, Furlaneto MC. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp. Rev. Inst. Med. Trop. Sao Paul. 2014; 56(2):1-103. Disponível em https://www.researchgate.net/profile/Marcia_Furlaneto/publication/260809626_Comparison_between_automated_system_and_PCR-based_method_for_identification_and_antimicrobial_susceptibility_profile_of_clinical_Enterococcus_spp/links/53f47e0d0cf2fceacc6e83d1/Comparison-between-automated-system-and-PCR-based-method-for-identification-and-antimicrobial-susceptibility-profile-of-clinical-Enterococcus-spp.pdf
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Ciência Animal Brasileira
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).