Water deficit affects leaf non-structural carbohydrates and biomass partitioning in chickpea
Abstract
Water deficit induces morphophysiological adjustments in plants, what includes changes in biomass partitioning, non-structural carbohydrates and their ratios, reducing stomatal conductance and photosynthesis, and affecting the synthesis of transitory starch in leaves. This study analyzed the impact of soil water tensions on leaf non-structural carbohydrates and biomass partitioning during chickpea cultivation. The BRS Aleppo and BRS Toro genotypes were grown at soil water potentials of -30, -50, -70 and -90 kPa throughout the cycle. The water status, shoot and root dry mass, non-structural carbohydrate content and carbohydrate ratios were assessed. Decreasing the soil water potential reduced the relative water content and shoot dry mass of both genotypes. However, the BRS Toro’s root dry mass increased with the reduction in the soil water potential, as did the root:shoot ratio, in both genotypes. The genotypes also showed variations in the contents of soluble carbohydrates and starch in leaves, which increased with the reduction in the soil water potential, except for starch in leaves of the BRS Toro. These findings, especially variations in the carbohydrate ratios, suggest that the starch turnover is essential in chickpeas’ resilience to water deficit.
KEYWORDS: Cicer arietinum L., soil water potential, starch.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors will not be paid for published articles and must waive their copyright in favor of the PAT journal. On the other hand, they are solely responsible for the content of those articles, even if the Editor holds the right to adjust them to the norms of the journal. Authors are allowed to publish their articles simultaneously in their institutional repositories, as soon as the original publication at the PAT journal is mentioned.