Low leaf sodium content improves the grain yield and physiological performance of wheat genotypes in saline-sodic soil
Abstract
Salt stress is a major production constraint in wheat. The maintenance of a low Na+ accumulation in the leaves may improve the tissue tolerance against salt stress. A field experiment was conducted to discriminate twenty wheat genotypes, based on leaf Na+ accumulation as a criterion for salt tolerance, and evaluate the effect of sodium accumulation on the biomass production, physiological and yield traits of wheat genotypes grown in a saline-sodic environment. The Na+ concentration was determined in young fully expanded leaves at the vegetative growth stage. The genotypes were categorized into two contrasting groups (with low and high Na+ content), in a randomized complete block design, with three replications. The low Na+ genotypes (V-03094, V-02156, TURACO, V0005 and PVN) showed much longer chlorophyll retention, leaf K+ content, proline and phenolic contents than the high Na+ genotypes. The salt effects on yield components were also less in the wheat genotypes with low leaf Na+ content than the high Na+ genotypes. The greater grain yield of low Na+ accumulating genotypes was due to the enhanced grain number and weight in their tillers, which were strongly associated with the higher Na+ efflux from the leaves. The low sodium accumulator genotypes improved the seedling emergence (%) and grain yield in saline-sodic soil.
KEYWORDS: Triticum aestivum L., salt stress, salt tolerance.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors will not be paid for published articles and must waive their copyright in favor of the PAT journal. On the other hand, they are solely responsible for the content of those articles, even if the Editor holds the right to adjust them to the norms of the journal. Authors are allowed to publish their articles simultaneously in their institutional repositories, as soon as the original publication at the PAT journal is mentioned.