K-isothermic Hypersurfaces

Authors

  • Marcelo Lopes Ferro Universidade Federal de Goiás (UFG), Instituto de Matemática e Estatística, Goiânia, Goiás, Brasil, marceloferro@ufg.br
  • Armando Vasques Corro Universidade Federal de Goiás (UFG), Instituto de Matemática e Estatística, Goiânia, Goiás, Brasil, corro@ufg.br
  • Luciana Àvila Rodrigues Universidade de Brasília (UnB), Departamento de Matemática, Brasília, Distrito Federal, Brasil, luavila@unb.br

DOI:

https://doi.org/10.5216/nm.v3.60657

Abstract

In this paper, we consider Hypersurfaces of dimension n in the Euclidean space and introduce the k-isothermic hypersurfaces, with k<n, as hypersurfaces that locally admit orthogonal parametrization by curvature lines with k coefficients of the first quadratic form distinct. Transformations that preserve k-isothermic hypersurface are isometries, dilations and invertions. We prove that there are no k-isothermic hypersurface dimension n with distinct principal curvatures for n ? k + 3. We introduced two ways to generate a (k + 1)-isothermic Hypersurface from a k-isothermic hypersurface, which we will call 2-reducible. Moreover, we provide a local characterization of Dupin 2-isothermic hypersurface and include explicit examples of Dupin 2-isothermic hypersurface 2-irreducible.

Downloads

Published

2020-07-25

How to Cite

FERRO, M. L.; CORRO, A. V.; RODRIGUES, L. Àvila. K-isothermic Hypersurfaces. NEXUS Mathematicæ, Goiânia, v. 3, 2020. DOI: 10.5216/nm.v3.60657. Disponível em: https://revistas.ufg.br/nexus/article/view/60657. Acesso em: 21 nov. 2024.