Evolution of the lipid, glycemic and blood pressure profile of premature infants: a longitudinal study

Authors

  • Cláudia Silveira Viera State University of Western Paraná http://orcid.org/0000-0002-0900-4660
  • Pâmela Talita Favil Pequeno Príncipe Hospital https://orcid.org/0000-0001-5714-7351
  • Beatriz Rosana Gonçalves de Oliveira Toso State University of Western Paraná https://orcid.org/0000-0001-7366-077X
  • Milene Sedrez Rover Oeste de Paraná University Hospital
  • Grasiely Masotti Scalabrin Barreto Oeste de Paraná University Hospital
  • Sabrina Grassioli State University of Western Paraná

DOI:

https://doi.org/10.5216/ree.v22.59190

Keywords:

Infant, Premature, Continuity of Patient Care, Lipid Metabolism, Blood Glucose, Neonatal Nursing

Abstract

Objective: To relate the evolution of the lipid, glycemic and blood pressure profile of premature infants from birth to 2 years corrected age with the classification of birth weight and sex. Methodology: Longitudinal study, initial sample of 71 premature infants, of which 31 completed outpatient follow-up. Evaluated at birth, discharge, 6 months and 2 years corrected age (weight, gestational age, lipid, glycemic, blood pressure profile). Results: Blood glucose, total cholesterol, blood pressure and triglycerides were not statistically significant in relation to birth weight nor throughout follow-up. Total cholesterol (p=0.18) and blood glucose underwent interaction with sex. Blood pressure was higher than expected at 2 years old. Growth was uniform regardless of sex. Conclusion: The lipid, glycemic and blood pressure profile of premature infants during follow-up was not influenced by the birth weight classification. The cholesterol and blood glucose concentrations were influenced by sex.

Downloads

Download data is not yet available.

References

Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. The Lancet. 2015;385(9966):430-40. https://doi.org/10.1016/S0140-6736(14)61698-6.

Marra NBF, Nascimento DW, Sousa FLP, Paltronieri MRLN, Guidoni RRGR, Toledo SF, et al. Prematuridade eletiva e as suas repercussões perinatais nas síndromes hipertensivas da gestação. Rev Unilus Ensino e Pesquisa. 2016;13(32):26-32.

BruscoTR,DelgadoSE.Caracterizaçãododesenvolvimento da alimentação de crianças nascidas pré-termo entre três e 12 meses. Revista CEFAC. 2014;16(3):917-28. https://doi.org/10.1590/1982-021620145313.

Guimarães MR, Nobre RS, Moura IH, Cortez RMA, Carvalho RBN, Silva ARV. Body fat and metabolic syndrome in adolescents. REUFPI – Revista de Enfermagem da UFPI. 2017; 6(3):30-6. https://doi.org/10.26694/reufpi.v6i3.611045313.

Parkinson JRC, Hyde MJ, Gale C, Santhakumaran S, Modi N. Preterm birth and the metabolic syndrome in adult life: a systematic review and meta- analysis. Pediatrics [Internet]. 2013 [access at: Oct. 07, 2018];131(4). Available at: http://pediatrics.aappublications.org/content/pediatrics/131/4/e1240.full.pdf. https://doi.org/10.1542/peds.2012-2177.

Wang G, Divall S, Radovick S, Paige D, Ning Y, Chen Z, et al. Preterm birth and random plasma insulin levels at birth and in early childhood. American Medical Association. 2014;311(6):587-96. https://doi.org/10.1001/jama.2014.1.

Suikkanen J, Matinolli HM, Eriksson JG, Järvenpää AL, Andersson S, Kajantie E, Hovi, P. Early postnatal nutrition after preterm birth and cardiometabolic risk factors in young adulthood. PLoS One [Internet]. 2018 [access at: Apr. 5, 2020];13(12):e0209404. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310277/pdf/pone.0209404.pdf. https://doi.org/10.1371/journal.pone.0209404.

Skogen JC, Overland S. The fetal origins of adult disease: a narrative review of the epidemiological literature. JRSM Short Rep [Internet]. 2012 [access at: Dec. 12, 2018];3(8):59. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434434/. https://doi.org/10.1258/shorts.2012.012048.

Heidmann LA, Procianoy RS, Silveira RC. Prevalence of metabolic syndrome-like in the follow-up of very low birth weight preterm infants and associated factors. J Pediatr [Internet]. 2019 [access at: Dec. 11, 2019];95(3):291-97. Available at: https://reader.elsevier.com/reader/sd/pii/S0021755717309567?token=651F2515C2A93F094AEB964BF17063A549F7EB681AAF7289E09B0AFB8510A2DFB74B23BFB6D8F4833833694A28BC0657. https://doi.org/10.1016/j.jped.2018.02.009.

Rover MMS, Viera CS, Silveira RC, Guimarães ATB, Grassiolli S. Risk factors associated with growth failure in the follow-up of very low birth weight newborns. Jornal de Pediatria [Internet]. 2016 [access at: Sept. 22, 2018];92(3):307-13. Available at: http://www.scielo.br/pdf/jped/v92n3/pt_0021-7557-jped-92-03-0307.pdf. https://doi.org/10.1016/j.jped.2015.09.006.

Lopes MN, Grassiolli S, Veríssimo MLOR, Toso BRGO, Favil PT, Paula ACR, et al. Perfil alimentar, metabólico e antropométrico de adolescentes nascidos prematuros. Journal of Human Growth and Development [Internet]. 2020 [access at: July 1, 2020]; 30(2):241-50. Available at: https://www2.marilia.unesp.br/index.php/jhgd/article/view/10370/6465. https://doi.org/10.7322/jhgd.v30.10370.

BarretoGMS,BalboSL,RoverMS,TosoBRGO,Oliveira HR, Viera CS. Crescimento e marcadores bioquímicos de recém-nascidos prematuros até os seis meses de idade corrigida. J. Hum Growth Dev [Internet]. 2018 [access at: Feb. 11, 2019];28(1):18-26. Available at: http://www.revistas.usp.br/jhgd/article/view/138687/138681. http://dx.doi.org/10.7322/jhgd.138687.

Consenso Brasileiro para a Normatização da Determinação Laboratorial do Perfil Lipídico. SBPC [Internet]. 2016 [access at: July 15, 2018];versão 1.13. Available at: http://www.sbpc.org.br/upload/conteudo/consenso_jejum_dez2016_final.pdf.

Lee PA, Chernausek SD, Hokken-Koelega ACS, Czernichow P. International Small for Gestational Age Advisory Board consensus development conference statement: management of short children born small for gestational age, April 24–October 1, 2001. Pediatrics. 2003;111(6 Pt 1):1253-61. http://dx.doi.org/10.1542/peds.111.6.1253.

McKinlay CJD, Chase JG, Dickson J, Harris DL, Alsweiler JM, Harding JE. Continuous glucose monitoring in neonates: a review. Matern Health Neonatol Perinatol. 2017;3:18. http://dx.doi.org/10.1186/s40748-017-0055-z.

Yashodha HT, Anjum SK. Cord blood lipid profile in late preterm and term neonates. Int J Contemp Pediatr [Internet]. 2018 Mar [access at: Aug. 10, 2018];5(2):542-46. Available at: https://www.ijpediatrics.com/index.php/ijcp/article/view/1343. http://dx.doi.org/10.18203/2349-3291.ijcp20180551.

Slhessarenko N, Jacob CM, Azevedo RS, Fontes CJF, Novak GV, Andriolo A. Serum lipids in Brazilian children and adolescents: determining their reference intervals. BMC Public Health. 2015;15(1):18. http://dx.doi.org/10.1186/s12889-015-1359-4.

Okada T, Takahashi S, Nagano N, Yoshikawa K, Yukihiro U, Hosono S. Early postnatal alteration of body composition in preterm and small-for- gestational-age infants: implications of catch-up fat. Pediatric Research. 2015;77(1-2):136-42. https://doi.org/10.1038/pr.2014.164.

Mortaz M, Fewtrell MS, Cole TJ, Lucas A. Birth weight, subsequent growth, and cholesterol metabolism in children 8–12 years old born preterm. Arch Dis Child [Internet]. 2001[access at: Nov. 22, 2018];84:212- 17. Available at: https://adc.bmj.com/content/archdischild/84/3/212.full.pdf.

Posod A, Odri Komazec I, Kager K, Pupp Peglow U, Griesmaier E, Schermer E, et al. Former very preterm infants show an unfavorable cardiovascular risk profile at a preschool age. PLoS ONE [Internet]. 2016 [access at: Nov. 22, 2018];11(12):e0168162. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0168162&type=printable. https://doi.org/10.1371/journal.pone.0168162.

;20(4):213-19. https://doi.org/10.6065/apem.2015.20.4.213.

Sipola-Leppänen M, Kajantie E. Should we assess cardiovascular risk in young adults born preterm? Curr Opin Lipidol. 2015 Aug;26(4):282-7. https://doi.org/10.1097/MOL.0000000000000190.

Yoon JY, Chung HR, Choi CW, Yang SW, Kim BI, Shin CH. Blood glucose levels within 7 days after birth in preterm infants according to gestational age. Ann Pediatric Endocrinol Metab.

Shah AB, Hashmi SS, Sahulee R, Pannu H, Gupta-Malhotra M. Characteristics of systemic hypertension in preterm children. J Clin Hypertens [Internet]. 2015 [access at: Nov. 12, 2018];17(5):364-70. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405455/pdf/nihms662462.pdf. https://doi.org/10.1111/jch.12528.

Barker DJP, Bagby SP. Developmental antecedents of cardiovascular disease: a historical perspective. J Am Soc Nephrol. 2005 Sep;16(9):2537-44. https://doi.org/10.1681/ASN.2005020160.

Tomat AL, Salazar FJ. Mechanisms involved in developmental programming of hypertension and renal diseases. Gender differences. Horm Mol Biol Clin Investig. 2014 May;18(2):63-77. https://doi.org/10.1515/hmbci-2013-0054.

Published

2020-12-20

How to Cite

1.
Viera CS, Favil PT, Toso BRG de O, Rover MS, Barreto GMS, Grassioli S. Evolution of the lipid, glycemic and blood pressure profile of premature infants: a longitudinal study. Rev. Eletr. Enferm. [Internet]. 2020 Dec. 20 [cited 2024 Jul. 27];22:59190. Available from: https://revistas.ufg.br/fen/article/view/59190

Issue

Section

Original Article