Relevant aspects for computational modeling of composite beams in fire situations: an approach based on the interaction between steel-concrete and the mechanical behavior of the materials

Authors

  • Leonardo Carvalho Mesquita Federal University of Viçosa (UFV) Rio Paranaiba Campus, Rio Paranaiba, MG, Brazil. https://orcid.org/0000-0001-5764-5334
  • Letícia Vinhal Pereira University of Sao Paulo, Sao Carlos School of Engineering, Sao Carlos, SP, Brazil.
  • Gabriela Silveira Brandão Federal University of Viçosa (UFV) Rio Paranaiba Campus, Rio Paranaiba, MG, Brazil.

DOI:

https://doi.org/10.5216/reec.v20i2.78269

Keywords:

Composite structures, Elevated temperatures, Steel-concrete interface, Finite element method, Abaqus

Abstract

The present work proposes a methodology for modeling steel and concrete composite beams in fire situations, emphasizing the computational treatment of the steel-concrete interface and the mechanical behavior of the materials at high temperatures. For this, three studies were developed covering the mechanical, thermal, and thermomechanical analysis of steel and concrete composite beams. In all studies, the results obtained showed good agreement with the experimental and numerical reference results, indicating that the strategies used to simulate the shear connectors and the mechanical behavior of the materials, both at room temperature and at elevated temperatures, are appropriate. Although understanding the behavior of composite structures in fire situations is challenging due to the numerous uncertainties associated with heat transfer phenomena and accurate tests at high temperatures, the computational model developed could adequately represent the thermomechanical behavior of the composite beam analyzed. The computational modeling methodology proposed in this work can assist in developing new studies in the area.

Downloads

Download data is not yet available.

Author Biographies

Leonardo Carvalho Mesquita, Federal University of Viçosa (UFV) Rio Paranaiba Campus, Rio Paranaiba, MG, Brazil.

Civil Engineer, PhD in Civil Engineering (Structures), Adjunct Professor, Federal University of Viçosa, Rio Paranaíba Campus, Rio Paranaíba, MG, Brazil.

Letícia Vinhal Pereira, University of Sao Paulo, Sao Carlos School of Engineering, Sao Carlos, SP, Brazil.

Civil Engineer, Master's student in Structural Engineering, University of São Paulo, São Carlos School of Engineering, São Carlos, SP, Brazil.

Gabriela Silveira Brandão , Federal University of Viçosa (UFV) Rio Paranaiba Campus, Rio Paranaiba, MG, Brazil.

Civil Engineer, Federal University of Viçosa (UFV), Rio Paranaíba Campus, Rio Paranaíba, MG, Brazil.

References

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14323: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios em situação de incêndio. 2 ed. Rio de Janeiro: 2013.89 p.

BYFIELD, M. P.; DHANALAKSHMI, M. Analysis of strain hardening in steel beams using mill tests. In: Advances in Steel Structures (ICASS'02). Elsevier, 2002. p. 139-146. https://doi.org/10.1016/B978-008044017-0/50015-9.

CHAPMAN, J. C.; BALAKRISHNAN, S. Experiments on composite beams. The Structural Engineer, v. 42, n. 11, p. 369-383, 1964.

COMITÊ EUROPEU DE NORMALIZAÇÃO. EN-1993-1-2: Eurocode 3: Design of Steel Structures. Brussels, Belgium, 2004. 78 p.

COMITÊ EUROPEU DE NORMALIZAÇÃO. EN-1994-1-2: Eurocode 4: Design of Composite Steel and Concrete Structures. Brussels, Belgium, 2004. 109 p.

DASSAULT SYSTÈMES. ABAQUS (DESSAULT SYSTÈMES, 2012) 6.12. Providence, RI, USA. 2012 (Software).

DAVOODNABI, Seyed Mehdi; MIRHOSSEINI, Seyed Mohammad; SHARIATI, Mahdi. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method. Steel and Composite Structures, An International Journal, v. 40, n. 6, p. 853-868, 2021. https://doi.org/10.12989/scs.2021.40.6.853.

FEDERAÇÃO INTERNACIONAL DO BETÃO. Model Code 2010: final draft. Lausanne (Suíça), 2011. 656 p.

HOZJAN, T., SAJE, M., SRPČIČ, S., PLANINC, I. Fire analysis of steel–concrete composite beam with interlayer slip. Computers & structures, v. 89, n. 1-2, p. 189-200, 2011. https://doi.org/10.1016/j.compstruc.2010.09.004

HUANG, Zhaohui; BURGESS, Ian W.; PLANK, Roger J. The influence of shear connectors on the behavior of composite steel-framed buildings in fire. Journal of Construction Steel Research, [S.l.], v. 51, p.219-237, 2011. https://doi.org/10.1016/S0143-974X(99)00028-0.

KIRCHHOF, Larissa Degliuomini; NETO, Jorge Munaiar; MALITE, Maximiliano; GONÇALVES, Roberto Martins. Análise numérica de viga mistas aço-concreto em temperatura ambiente e em situação de incêndio. Semana: Ciências Exatas e Tecnológica, Londrina, v. 26, n. 1, p. 69-82, 2005.

KORDINA, K.; DROESE, S. Versuche Mit Form Stahlbewehrten Stahlbetonbalken. BAUINGENIEUR, DER, v. 62, n. 3, 1987.

LI, Guo-Qiang; ZHANG, Nasi; JIANG, Jian. Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire. Fire Safety Journal, v. 89, p. 63-76, 2017. https://doi.org/10.1016/j.firesaf.2017.02.009.

MARAVEAS, Chrysanthos; SWAILES, Thomas; WANG, Yong. A detailed methodology for the finite element analysis of asymmetric slim floor beams in fire. Steel Construction, v. 5, n. 3, p. 191-198, 2012. https://doi.org/10.1002/stco.201210024.

MARTINS, Michele Mendonça. Dimensionamento de estruturas de aço em situação de incêndio. 232 p. Dissertação (Mestrado) Escola de Engenharia, Universidade Federal de Minas Gerais. Belo Horizonte, Minas Gerais, 2000.

MIRZA, Olivia; UY, Brian. Behaviour of headed stud shear connectors for composite steel–concrete beams at elevated temperatures. Journal of Constructional Steel Research, v. 65, n. 3, p. 662-674, 2009. https://doi.org/10.1016/j.jcsr.2008.03.008.

PENG, Xing; ZHOU, Man. Thermo-mechanical behavior of composite beams with corrugated steel webs exposed to localized fire. Journal of Constructional Steel Research, v. 211, p. 108180, 2023. https://doi.org/10.1016/j.jcsr.2023.108180.

ROCHA, P.A.S.; SILVA, K.I. Estudo do desempenho de vigas em situação de incêndio a partir do modelo de fibras. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, Ouro Pedro, v. 1-2, n. 33, p.65-71, 2017.

SANTOS, Daniel Bonfim Rocha. Modelagem numérica de lajes mistas de aço e concreto em situação de incêndio. 2014. 243 p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos da Universidade de São Paulo, Departamento de Engenharia de Estruturas, Universidade de São Paulo, São Carlos, 2014.

SHAHABI, S., SULONG, N., SHARIATI, M., SHAH, S. Performance of shear connectors at elevated temperatures-A review. Steel Composite Structures, 20(1), 185-203, 2016. http://dx.doi.org/10.12989/scs.2016.20.1.185.

WAINMAN, D.E.; KIRBY, B.R. Compendium of UK standard fire test data, unprotected structural steel 1. Ref. No RS/RSC/S10328/1/87/B. Rotherham (UK): Swiden Laboratories, British Steel Corportation, 1988.

WALD, F., DA SILVA, L. S., MOORE, D. B., LENNON, T., CHLADNA, M., SANTIAGO, A., BORGES, L. Experimental behaviour of a steel structure under natural fire. Fire Safety Journal, v. 41, n. 7, p. 509-522, 2006. https://doi.org/10.1016/j.firesaf.2006.05.006.

Published

2024-09-19

How to Cite

MESQUITA, L. C.; VINHAL PEREIRA, L.; SILVEIRA BRANDÃO , G. Relevant aspects for computational modeling of composite beams in fire situations: an approach based on the interaction between steel-concrete and the mechanical behavior of the materials. REEC - Revista Eletrônica de Engenharia Civil, Goiânia, v. 20, n. 2, p. 14–34, 2024. DOI: 10.5216/reec.v20i2.78269. Disponível em: https://revistas.ufg.br/reec/article/view/78269. Acesso em: 27 sep. 2024.