Nonlinear dynamic analysis of reticulated structures through the co-rotational finite element considering the shear and different mass matrixes

Authors

DOI:

https://doi.org/10.5216/reec.v19i2.75787

Keywords:

Nonlinear dynamic analysis, Co-rotational formulation, Timoshenko mass matrix, Timoshenko beam, Finite Element

Abstract

ABSTRACT: Second-order effects on structures with a high slenderness index may play an important role regarding the mechanical behavior of such structures, since they imply an increase in the risk of instability. Additionally, linear static analysis may not describe the real behavior of a structure subjected to various external loads, especially in the case of atypical situations, such as earthquakes and strong wind gusts. In this context, a co-rotational formulation of the Finite Element Method is computationally implemented with the free program Scilab for dynamic nonlinear analysis of beams and frames. The Euler-Bernoulli and Timoshenko beam models are used to evaluate the stiffness matrix and the internal force vector of the structural system. The pseudocode of the incremental and iterative procedure based on the Newton-Raphson and Newmark methods is presented, which is used to obtain the approximate solution of the differential equation of motion. To verify the effectiveness of the implemented formulation, transient dynamic analyzes of structures with geometric nonlinearity found in the literature are performed. Furthermore, the first three natural frequencies of the structures are presented. Numerical results show the importance of choosing the appropriate mass matrix and considering the shear effect on the stiffness of the structural system, contributing to the development of computational models for the analysis and design of structures.

Downloads

Download data is not yet available.

Author Biography

Luiz Antonio Farani de Souza, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, Paraná, Brasil. lasouza@utfpr.edu.br

Civil Engineer, PhD, Professor at Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil - lasouza@utfpr.edu.br

References

ARRUDA, M. R. T.; CASTRO, L. M. S. Structural dynamic analysis using hybrid and mixed finite element models. Finite Elements in Analysis and Design, Vol. 57, 2012, 43-54 p.

ARRUDA, M. R. T.; MOLDOVAN, D. I. On a mixed time integration procedure for non-linear structural dynamics. Engineering Computations, Vol. 32, n. 2, 2015, 329-369 p.

BATHE, K.-J. Finite element procedures. New Jersey: Prentice-Hall, Inc., 1996.

BATTINI, J. M. Co-rotational beam elements in instability problems. Doctoral thesis - Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden, 2002.

BEHESHTI, A. Large deformation analysis of strain-gradient elastic beams. Computers & Structures, Vol. 177, 2016, 162-175 p.

CHHANG, S.; BATTINI, J. M.; HJIAJ, M. Energy-momentum method for co-rotational plane beams: A comparative study of shear flexible formulations. Finite Elements in Analysis and Design, Vol. 134, 2017, 41-54 p.

CHHANG, S.; SANSOUR, C.; HJIAJ, M.; BATTINI, J. M. An energy-momentum co-rotational formulation for nonlinear dynamics of planar beams. Computers & Structures, Vol. 187, 2017, 50-63 p.

CHOPRA, A. K. Dynamics of Structures. New Jersey: Prentice-Hall, Inc., 1995.

CHUNG, J.; YOO, H. H. Dynamic analysis of a rotating cantilever beam by using the finite element method. Journal of Sound and vibration, Vol. 249, n. 1, 2002, 147-164 p.

CLOUGH, R. W.; PENZIEN, J. Dynamics of structures. Berkeley: Computers & Structures, Inc., 1995.

CODA, H. B.; PACCOLA, R. R. A total-Lagrangian position-based FEM applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse. Finite Elements in Analysis and Design, Vol. 91, 2014, 1-15 p.

COOK, R. D.; MALKUS, D. S.; PLESHA, M. E. Concepts and Applications of Finite Element Analysis. 4th edition. New York: John Wiley & Sons, Inc., 2001.

CRISFIELD, M. A. Non-linear Finite Element Analysis of Solids and Structures. Vol. 1. Chichester, England: John Wiley & Sons Ltd, 1991.

DENG, L.; ZHANG, Y. A consistent corotational formulation for the nonlinear dynamic analysis of sliding beams. Journal of Sound and Vibration, Vol. 476, 2020, 115298 p.

DENG, L.; NIU, M. Q.; XUE, J.; CHEN, L. Q. A two‐dimensional corotational curved beam element for dynamic analysis of curved viscoelastic beams with large deformations and rotations. International Journal for Numerical Methods in Engineering, 2022.

ELKARANSHAWY, H. A.; ELERIAN, A. A. H.; HUSSIEN, W. I. A corotational formulation based on hamilton’s principle for geometrically nonlinear thin and thick planar beams and frames. Mathematical Problems in Engineering, Vol. 2018, 2018.

FERNANDES, W. L.; VASCONCELLOS, D. B.; GRECO, M. Dynamic instability in shallow arches under transversal forces and plane frames with semirigid connections. Mathematical Problems in Engineering, Vol. 2018, 2018.

GALVÃO, A. S.; SILVA, A. R.; SILVEIRA, R. A.; GONÇALVES, P. B. Nonlinear dynamic behavior and instability of slender frames with semi-rigid connections. International Journal of Mechanical Sciences, Vol. 52, n. 12, 2010, 1547-1562 p.

GRECO, M.; CODA, H. B. Positional FEM formulation for flexible multi-body dynamic analysis. Journal of Sound and vibration, v. 290, n. 3-5, 2006, 1141-1174 p.

HAN, S. M.; BENAROYA, H.; WEI, T. Dynamics of transversely vibrating beams using four engineering theories. Journal of Sound and vibration, Vol. 225, n. 5, 1999, 935-988 p.

IURA, M.; ATLURI, S. N. Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames. Computers & structures, Vol. 55, n. 3, 1995, 453-462 p.

KIEN, N. D. A Timoshenko beam element for large displacement analysis of planar beams and frames. International Journal of Structural Stability and Dynamics, Vol. 12, n. 06, 2012, 1250048 p.

KIM, W. An improved implicit method with dissipation control capability: The simple generalized composite time integration algorithm. Applied Mathematical Modelling, Vol. 81, 2020, 910-930 p.

LE, T. N.; BATTINI, J. M.; HJIAJ, M. Efficient formulation for dynamics of corotational 2D beams. Computational Mechanics, Vol. 48, 2011, 153-161 p.

LIU, T. Y.; LI, Q. B.; ZHAO, C. B. An efficient time-integration method for nonlinear dynamic analysis of solids and structures. Science China Physics, Mechanics and Astronomy, Vol. 56, 2013, 798-804 p.

MARTÍN, H.; MAGGI, C.; PIOVAN, M.; DE ROSA, A. Natural vibrations and instability of plane frames: Exact analytical solutions using power series. Engineering Structures, Vol. 252, 2022, 113663 p.

MOUSSEMI, M.; NEZAMOLMOLKI, D.; AFTABI SANI, A. Dynamic investigation of a two story-two span frame including semi-rigid Khorjini connections. International Journal of Steel Structures, Vol. 17, 2017, 1471-1486 p.

NETTO, A. B. R.; ARAUJO, R. R. Comparação das frequências naturais e modos de vibração de vigas metálicas biapoiadas com uma e duas almas senoidais utilizando o ANSYS. Projectus, Vol. 3, n. 1, 2018, 125-139 p.

NEWMARK, N. M. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, Vol. 85, n. 3, 1959, 67-94 p.

ORDAZ-HERNANDEZ, K.; FISCHER, X. Fast reduced model of non-linear dynamic Euler–Bernoulli beam behaviour. International Journal of Mechanical Sciences, Vol. 50, n. 8, 2008, 1237-1246 p.

RAJASEKARAN, S. Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB. Elsevier, 2009.

REDDY, J. N. An Introduction to Nonlinear Finite Element Analysis Second Edition: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford, 2014.

RODRIGUES, R. O.; VENTURINI, W. S. Análise dinâmica bidimensional não-linear física e geométrica de treliças de aço e pórticos de concreto armado. Cadernos de Engenharia de Estruturas, São Carlos, Vol. 7, n. 23, 2005, 61-93 p.

SCILAB, versão 2023.0.0. Dassault Systèmes, 2023.

URTHALER, Y.; REDDY, J. A corotational finite element formulation for the analysis of planar beams. Communications in Numerical Methods in Engineering, Vol. 21, n. 10, 2005, 553-570 p.

VIANA, H. F.; SILVA, R. G. L.; COSTA, R. S.; LAVALL, A. C. C. Formulation for nonlinear dynamic analysis of steel frames considering the plastic zone method. Engineering Structures, Vol. 223, 2020, 111197 p.

XU, C.; WANG, Z.; LI, H. Direct FE numerical simulation for dynamic instability of frame structures. International Journal of Mechanical Sciences, Vol. 236, 2022, 107732 p.

XUE, Q.; MEEK, J. L. Dynamic response and instability of frame structures. Computer Methods in Applied Mechanics and Engineering, Vol. 190, n. 40-41, 2001, 5233-5242 p.

YAW, L. L. 2D Corotational Beam Formulation. Walla Walla, USA: Walla Walla University, 2009.

Published

2023-12-28

How to Cite

ANTONIO FARANI DE SOUZA, L. Nonlinear dynamic analysis of reticulated structures through the co-rotational finite element considering the shear and different mass matrixes. REEC - Revista Eletrônica de Engenharia Civil, Goiânia, v. 19, n. 2, p. 1–20, 2023. DOI: 10.5216/reec.v19i2.75787. Disponível em: https://revistas.ufg.br/reec/article/view/75787. Acesso em: 20 dec. 2024.