Life Cycle Assessment of green roof in brazilian social housing

Authors

  • Julia Santiago de Matos Monteiro Lira Federal Institute of Piauí (IFPI). Teresina, PI, Brazil. https://orcid.org/0000-0003-4048-2668
  • Lucas Rosse Caldas Federal University of Rio de Janeiro (UFRJ), Department of Structures. Rio de Janeiro, RJ, Brazil. https://orcid.org/0000-0002-3108-2833
  • Thiago Oliveira Rodrigues Forest Technology and Geoprocessing Foundation (FUNTEC), Brasília, DF, Brazil
  • Rosa Maria Sposto University of Brasilia (UnB), Brasilia, DF, Brazil.

DOI:

https://doi.org/10.5216/reec.v20i1.75734

Keywords:

LCA, Green roof, Conventional roof, Use stage, Building

Abstract

ABSTRACT: The green roof is an old alternative to reduce the effects of heat islands and global warming, providing thermal comfort benefits in buildings. However, aspects related to its environmental performance are still little studied. In this context, the objective of this study was to perform a cradle-to-grave Life Cycle Assessment (LCA) of a Green Roof (GR) compared to a Conventional Roof (CR) for a social interest housing in Brasília. The methodology used for the LCA was done in the software GaBi 6. In the use phase, the electric consumption for the use of artificial conditioning was quantified by the software DesignBuilder, for bioclimatic zone 4. The resulting value was entered into GaBi along with the other data to calculate the impact categories. The use phase had the highest environmental impact value in the categories evaluated. GR was favorable in most categories. The use of ceramic tiles was most responsible for the environmental impacts of the CR. Throughout the cradle-to-grave LCA, the replacement of a conventional roof by a green roof proved to be favorable, contributing to lower environmental impacts, especially considering the impact of use in a housing development, promoting microclimate alteration.

Downloads

Download data is not yet available.

Author Biographies

Julia Santiago de Matos Monteiro Lira, Federal Institute of Piauí (IFPI). Teresina, PI, Brazil.

Civil Engineering, Federal Institute of Piauí (IFPI). PhD student in Development and Environment at the Federal University of Piauí (UFPI).

Lucas Rosse Caldas, Federal University of Rio de Janeiro (UFRJ), Department of Structures. Rio de Janeiro, RJ, Brazil.

PhD in Civil Engineering. Professor at the Faculty of Architecture and Urbanism of the Federal University of Rio de Janeiro (UFRJ), Department of Structures. Rio de Janeiro, RJ, Brazil.

Thiago Oliveira Rodrigues, Forest Technology and Geoprocessing Foundation (FUNTEC), Brasília, DF, Brazil

PhD in Forestry Engineering, Director of the Forestry Technology and Geoprocessing Foundation – (FUNTEC), Brasília - DF.

Rosa Maria Sposto, University of Brasilia (UnB), Brasilia, DF, Brazil.

Civil Engineer, PhD in Civil Engineering, Professor at the Faculty of Technology, Department of Civil and Environmental Engineering at the University of Brasília (UnB)

References

ABNT Associação Brasileira de Normas Técnicas. NBR 15220-3. Desempenho Térmico de Edificações. Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. ABNT, 2005. 30 p.

______. NBR 15.575-4. Edifícios habitacionais de até cinco pavimentos Edificações habitacionais - Desempenho - Parte 4: Sistemas de vedações verticais internas e externas - SVVIE. Rio de Janeiro, 2013.

AGOPYAN, V. et al. Alternativas para a redução de desperdício de materiais nos canteiros de obras. Relatório Final. PCC-USP/FINEP/ITQC, 5 volumes. 1355 p. Setembro de 1998.

AGYEKUM, E.; FORTUIN, K.; VAN DER HARST. Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana. Journal of Cleaner Production, v. 143, p. 1069-1080, 2017. https://doi.org/10.1016/j.jclepro.2016.12.012.

BENGOA, X. Quantis International. Análise comparativa do ciclo de vida das Telhas cerâmicas versus Telhas de concreto. Montreal: Anicer, 2011. 77 p.

BLACKHURST, M.; HENDRICKSON, C.; MATTHEWS, H. Cost-effectiveness of green roofs. Journal of Architectural Engineering, v. 16, p. 136-143, 2010. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000022.

BRITISH STANDARD. EN 15804: 2012. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. Brussels European Committee for Standardization, 2019.

CALDAS, L. R. Avaliação do Ciclo de Vida Energético e de Emissões de CO2 de uma edificação habitacional unifamiliar de Light Steel Frame. Dissertação de mestrado em estruturas e construção civil, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 174 p., 2016.

COMA, J.; PÉREZ, G.; SOLÉ, C.; CASTELL, A.; CABEZA, L. Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renewable Energy, v. 85, p. 1106-1115, 2016. https://doi.org/10.1016/j.renene.2015.07.074.

CONTARINI, A.; MEIJER, A. LCA comparison of roofing materials for flat roofs. Smart and Sustainable Built Environment, v. 4, p. 97-109, 2015. https://doi.org/10.1108/SASBE-05-2014-0031.

CUBI, E.; ZIBIN, N.; THOMPSON, S.; BERGERSON, J. Sustainability of Rooftop Technologies in Cold Climates: Comparative Life Cycle Assessment of White Roofs, Green Roofs, and Photovoltaic Panels. Journal of Industrial Ecology, v. 20, p.249-262, 2015.

EL BACHAWATI, M.; MANNEH, R.; BELARBI, R.; DANDRES, T.; NASSAB, C.; EL ZAKHEM, H. Cradle-to-gate Life Cycle Assessment of traditional gravel ballasted, white reflective, and vegetative roofs: A Lebanese case study. Journal of Cleaner Production, v. 137, p. 833-842, 2016. https://doi.org/10.1016/j.jclepro.2016.07.170

GAN, V. J. L.; CHENG, J. C. P.; LO, I. M. C.; CHAN, C. M. Developing a CO2 e accounting method for quantification and analysis of embodied carbon in high-rise buildings. Journal of Cleaner Production, v. 141, p. 825-836, 2017. https://doi.org/10.1016/j.jclepro.2016.09.126.

KOSAREO, L; RIES, R. Comparative environmental life cycle assessment of green roofs. Building and Environment, V. 42, p. 2603-2613, 2007. https://doi.org/10.1016/j.buildenv.2006.06.019.

KOURA, J.; MANNEH, R.; BELARBI, R.; EL KHOURY, V.; EL BACHAWATI, M. Comparative cradle to grave environmental life cycle assessment of traditional and extensive vegetative roofs: An application for the Lebanese context. The International Journal of Life Cycle Assessment, v. 25, n. 3, p. 423-442, 2020. https://doi.org/10.1007/s11367-019-01700-z.

LAMNATOU, C.; CHEMISANA, D. Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle–based environmental indicators. Building and Environment, v. 93, p.376-384, 2015.

PEDROSO, G. M. Avaliação de Ciclo de Vida Energético (ACVE) de sistemas de vedação de habitações. Tese de Doutorado em Estruturas e Construção Civil, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, DF, 226p, 2015.

PERI, G.; TRAVERSO, M.; FINKBEINER, M.; RIZZO, G. Embedding “substrate” in environmental assessment of green roofs life cycle: evidences from an application to the whole chain in a Mediterranean site. Journal of Cleaner Production, v. 35, n. 1, p.274-287, 2012. https://doi.org/10.1016/j.jclepro.2012.05.038.

SILVA, V. G.; SILVA, M. G. Seleção de materiais e edifícios de alto desempenho ambiental. In: GONÇALVES, J. C. S.; BODE, K. Edifício Ambiental. São Paulo: Oficina de Textos, 2015. Cap. 5. p. 129-151.

SOUZA, V. P.; TOLEDO, R.; HOLANDA, J. N. F.; VARGAS, H., FARIA JR, R. T. Análise dos gases poluentes liberados durante a queima de cerâmica vermelha incorporada com lodo de estação de tratamento de água. Cerâmica, v. 54, p. 351-355, 2008. https://doi.org/10.1590/S0366-69132008000300013.

YELLISHETTY, Mohan; MUDD, Gavin M.; RANJITH, P.G. The steel industry, abiotic resource depletion and life cycle assessment: a real or perceived issue? Journal of Cleaner Production, v. 19, p.78-90. 2011. https://doi.org/10.1016/j.jclepro.2010.08.020.

Published

2024-09-16

How to Cite

SANTIAGO DE MATOS MONTEIRO LIRA, J.; ROSSE CALDAS, L.; OLIVEIRA RODRIGUES, T.; SPOSTO, R. M. Life Cycle Assessment of green roof in brazilian social housing. REEC - Revista Eletrônica de Engenharia Civil, Goiânia, v. 20, n. 1, p. 30–46, 2024. DOI: 10.5216/reec.v20i1.75734. Disponível em: https://revistas.ufg.br/reec/article/view/75734. Acesso em: 27 sep. 2024.