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Abstract: The aim of this study was to characterize the production and anaerobic digestion of manure 
from finishing pigs subjected to feed restriction or supplemented with ractopamine or chromium (Cr). 
The waste came from 50 barrows in the finishing phase, aged ± 154 days, with a starting weight of 
99.0 ± 4.4 kg and a final weight of 117.2 ± 5.8 kg. The experimental diets were as follows: control 
(conventional diet), qualitative restriction (7.5% reduction in net energy compared to the control diet), 
quantitative restriction (15% reduction in feed supply), Cr (0.8 mg), and ractopamine (10 ppm). The 
data were subjected to an analysis of variance using a randomized block design, in which the weeks of 
analysis were considered blocks (cofactors). There were no differences in manure production between 
the diets regarding natural matter (NM), dry matter (DM), mineral matter (MM), or organic matter (OM). 
Animals fed the control diet had the highest residue coefficient, and there was no difference among 
the other diets. No differences were observed among the diets regarding total solids, pH, or total 
nitrogen in the tributaries or effluents. The highest biogas yield (574 mL g-1) of added volatile solids (VS) 
was obtained in the digesters supplied with manure from animals fed a qualitatively restricted diet. 
It can be concluded that a qualitatively restricted diet results in higher manure production but with 
lower nitrogen and phosphorus excretion and higher biogas yields.
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Resumo: Realizou-se este estudo como o objetivo de caracterizar a produção e a digestão anaeróbia 
de dejetos de suínos em terminação submetidos a restrição alimentar ou suplementados com 
ractopamina ou cromo (Cr). Os dejetos foram provenientes de 50 suínos machos castrados, em fase 
de terminação, com ± 154 dias de idade, com peso inicial de 99,0 ± 4,4kg e final de 117,2 ± 5,8kg. As 
dietas experimentais foram: controle (dieta convencional); restrição qualitativa (redução de 7,5% de 
energia líquida em relação à dieta controle); restrição quantitativa (redução de 15% no fornecimento 
de ração); Cr (0,8 mg); e ractopamina (10 ppm). Os dados foram submetidos à análise de variância 
por meio do delineamento em blocos ao acaso, no qual as semanas de análises foram consideradas 
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como blocos (cofator). Não foram observadas diferenças entre as dietas nas produções de dejetos na 
matéria natural (MN), matéria seca (MS), matéria mineral (MM) e matéria orgânica (MO). Animais que 
receberam a dieta controle apresentaram o maior coeficiente de resíduo e não houve diferença entre 
as demais dietas. Não foram observadas diferenças entre as dietas para sólidos totais, pH e nitrogênio 
total dos afluentes e efluentes. O maior rendimento de biogás (574 mL g-1) de sólidos voláteis (SV) 
adicionados foi obtido com os digestores abastecidos com dejetos de animais alimentados com dieta 
qualitativamente restrita. Conclui-se que a dieta com restrição qualitativa resulta em maior produção 
de dejetos, porém com menores excreções de nitrogênio e fósforo e maior rendimento de biogás.

Palavras-chave: biogás; digestores; mineral orgânico; promotor de crecimento

1. Introduction
Various nutritional strategies can be used during the finishing phase of pigs to improve 

growth rate, feed efficiency, and carcass quality. This includes using food restriction or 
supplementing diets with additives such as ractopamine and/or Cr. Feed restriction during 
finishing aims to improve feed efficiency and carcass quality by reducing the amount of fat 
deposited, and consequently, increasing the percentage of meat (1, 2, 3).

Dietary restrictions can be quantitative or qualitative. Energy consumption can be 
reduced by restricting the quantity of food and controlling the amount of feed provided to 
the animals. Based on this assumption, the lower the food supply, the lower the manure 
production. Another form of food restriction that reduces energy consumption in animals is 
the inclusion of ingredients with lower caloric value, known as qualitative food restriction (4). 

Cr is a mineral component of the glucose tolerance factor that increases the fluidity of the 
cell membrane, allowing binding of the insulin receptor, which increases glucose uptake (5). Cr 
participates in lipid and protein metabolism and nucleic acid synthesis (6), and can promote an 
increase in weight gain, feed consumption, and the percentage of lean meat in pig carcasses 
when supplemented correctly (7, 8).

The inclusion of ractopamine in pig feed during the finishing phase has positive effects 
on performance (9), increases lean carcass mass, and reduces the amount of carcass fat (10, 

11). Ractopamine is a synthetic compound that has a chemical and pharmacological structure 
and properties similar to that of natural catecholamines (12), which acts through β-specific 
receptors, resulting in a decrease in lipogenesis and an increase in muscle mass (13).

Based on these concepts, it is hypothesized that animals fed diets with a lower energy 
density will produce waste with fewer pollutants. From the same perspective, other 
recommended nutritional strategies are diets supplemented with ractopamine or Cr, which 
can improve performance and reduce the amount of fat deposited in the carcass.

However, information on the effects of ractopamine, feed restriction, and Cr on manure 
characteristics and their impact on the environment is still unclear, and information on this 
subject is scarce in the literature. Therefore, considering the need for information related to 
the composition of manure, the aim of this study was to characterize the manure and evaluate 
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the anaerobic digestion of this waste from finishing pigs fed diets containing ractopamine or 
Cr, or under quantitative or qualitative dietary restrictions. 

2. Material and Methods
The experiments were performed at the Animal Waste Laboratory of the State University 

of Mato Grosso do Sul, Brazil. The municipality has two well-defined seasons: rainy summers 
and dry winters. The average temperature was 29.4 °C during the experiment.

The manure came from 50 barrows in the finishing phase, aged ± 154 days, with a 
starting weight of 99.0 ± 4.4 kg and a final weight of 117.2 ± 5.8 kg. The animals were housed 
in a masonry shed and divided into five groups of ten animals each, with two animals per 
stall. The room was covered with ceramic tiles, had a concrete floor with shingled sides, and 
was fitted with curtains. The stalls, measuring 1.15 × 2.86 m, were equipped with feeders, 
nipple-type drinkers and water slides measuring 1.15 × 0.30 × 0.10 m. 

The diets were formulated from corn and soybean meal and supplemented with vitamins 
and minerals to meet the nutritional requirements established by Rostagno et al. (14). These were 
the control (conventional diet), qualitative restriction (7.5% reduction in net energy compared 
to the control diet), quantitative restriction (15% reduction in feed supply), Cr (0.8 mg), and 
ractopamine (10 ppm).

Manure was collected on the last three days of the experimental phase, immediately 
after excretion, according to the experimental diet to which the animals were subjected. 
On the days prior to collection, the water slides were thoroughly cleaned, and the water 
supply was turned off for 24 hours. After this period, waste from each stall was collected 
by scraping the floor. The collected material was weighed and stored in a freezer in labeled 
plastic bags. The manure generated and collected from each stall was identified, treated, 
and stored until it was analyzed in the laboratory. Afterward, the manure was homogenized 
to obtain a composite sample for each treatment to obtain the material supplied to the 
anaerobic digesters.

Manure production was expressed as kg of total solids (TS) animal-1 day-1 and calculated 
using data from the daily weighing of manure (kg) and the TS content of the manure, in which 
manure production (TS animal-1 day-1) = manure, kg × TS, %. The residue coefficient (RC) was 
calculated from the manure production data (in DM) and weight gain during the confinement 
period for each animal, according to the following equation: RC = amount of manure, kg 
in DM / weight gain, kg. Ten semi-continuous cylindrical bench digesters made of polyvinyl 
chloride (PVC) with a useful volume of 7.5 L of the fermenting substrate were used (Figure 1). 
The digesters consisted of two distinct parts: a fermentation chamber and a gasometer, which 
consisted of two internal and external, whose purpose was to store and quantify the generated 
gas. The fermentation chamber and gasometer were connected using a silicone hose. 
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Figure 1 Schematic representation of the experimental anaerobic digester used

The initial tributaries were formulated to contain approximately 3% TS. The start-up time 
was 30 days; during this period, biogas was burned in all the digesters. After the start-up, 
the digesters were subjected to daily loads for 90 days. During this period, the digesters 
were supplied daily with effluent that varied according to the treatments, with the addition of 
sodium bicarbonate (NaHCO₃), used to help form and maintain alkalinity, correct pH and thus 
provide a suitable environment for greater reduction of volatile solids (VS), promoting greater 
biogas production accompanied by better quality biofertilizer.

During the test, samples of the effluent were collected daily to determine the TS and VS 
contents and weekly to measure the pH values using a digital potentiometer. Ammoniacal 
nitrogen (N ammonia) was determined according to the methodology described by APHA (15), 
and partial alkalinity (PA), intermediate alkalinity (IA), and total alkalinity (TA) were determined 
according to Ripley et al. (16) and Jenkins et al. (17). Total nitrogen (N) concentration was determined 
using the Kjeldahl method according to Silva and Queiroz (18).

The effluents and tributaries were analyzed every two weeks using dry digestion and 
spectrophotometry (725 nm) to determine the concentration of total phosphorus (P). Dry 
digestion consisted of calcining the ground samples in a muffle furnace at 600 °C for 3 hours, 
the addition of 2 mL of concentrated hydrochloric acid, calcination for a further 3 hours, 
digestion in a digester block with a sand bath at 200 °C with the addition of hydrochloric acid 
diluted in water (1:1) for approximately 30 minutes, and dilution and storage of solutions. 

The calorimetric method involved the formation of a yellow compound from the 
phosphoric vanodomolybdenum system with an acidity of 0.2–1.6 N (19). The color development 
was measured in a spectrophotometer, and the P concentration of the samples were 
determining using a standard line drawn using known concentrations between 0 and 52 μg 
of P mL-1. The standards were prepared as described by Malavolta (20).
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Biogas production was calculated based on the displacement of the gasometer 
measured with a 50 cm tape measure. After reading the volume produced, the temperature 
was measured using a digital thermometer placed at the biogas outlet until it stabilized. After 
each reading, the gasometers were zeroed by discharging biogas. To correct for the volume 
of biogas, an expression resulting from the combination of Boyle’s and Gay–Lussac’s laws 
was used.

Considering that the average atmospheric pressure in Aquidauana during the 
experimental period was 10293 mm of H2O, the result is the following expression was used 
to correct the volume of biogas:

V0 = corrected biogas volume, m3, 

P0 = corrected biogas pressure (mm H2O) 

T0 = Corrected biogas temperature (297.7525 K) 

V1 = Volume of biogas in gasometer 

P1 = Biogas pressure at the time of reading (mm H2O); 

T1 = Biogas temperature at the time of reading, K 

Biogas burning tests were carried out using a Bunsen burner attached to the biogas 
outlet to monitor the stability of the process because overloading digesters can lead to the 
accumulation of volatile acids and excessive amounts of carbon dioxide in the biogas, a 
condition where it does not burn. The biogas production potentials were calculated using the 
daily biogas production data for each treatment and the quantities of VS added during the 
process. Values are expressed in mL of biogas per gram of added VS. 

The anaerobic digestion process monitoring data were subjected to analysis of variance 
using a randomized block design, and the weeks of analysis were considered as blocks 
(cofactors). Manure production data were statistically analyzed using the Scott–Knott test, 
with a 5% probability. Data on the chemical characteristics of the tributaries and effluents (%) 
were analyzed using the Scott–Knott test at a 1% probability level.

3. Results and Discussion
There were no significant differences between the diets in the production of natural 

matter (NM), dry matter (DM), or organic matter (OM) (Table 1). However, there were 
differences between the diets in the residue coefficient (RC). Animals fed the control diet 
had a higher RC (1.12) than those fed the other diets, which, in turn, showed no differences 
between them. The data indicated that the highest amount of waste per kilogram of meat 
produced was generated by feeding the basal diet; that is, the supply of this diet may have a 
greater environmental impact than the others because the same amount of meat would be 
produced at the expense of greater waste generation. From a manure treatment perspective, 
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larger systems are required for the same unit of meat produced with the supply of other 
diets.

Table 1 Manure production based on natural material (NM), dry material (DM), organic matter 
(OM), and residue coefficient (RC) of finishing pigs fed different diets

Diets
NM DM OM

RC, kg
g animal-1 day-1

Control 548 169 120 1.12a

Qualitative restriction 838 306 202 0.73b

Quantitative restriction 671 231 122 0.77b

Chrome 545 160 123 0.46b

Ractopamine 754 223 169 0.82b

P-value 0.356 0.108 0.127 0.008

CV, % 20.78 21.21 20.70 34.33

Means followed by the same letter in the column do not differ by the Scott-Knott test (P<0.05).

The concentrations of ammoniacal N and alkalinity (Table 2), which indicate the balance 
and stability of the process, were satisfactory with no risk of failure in the anaerobic digestion 
process (21, 22, 23). Ammoniacal N is beneficial for anaerobic digestion, serving as a source of 
nitrogen and a buffer to prevent pH changes (24). The concentration of ammoniacal N in the 
effluent ranged from 525 to 771 mg L-1, which were below the process inhibition levels, which 
are higher than 1,070 mg L-1 according to Agyeman et al. (25).

Table 2 Average concentrations of ammoniacal nitrogen and alkalinity in the affluent and effluent 
of manure from finishing pigs fed different diets

Diets Ammoniacal N, mL
Alkalinity, mL

Partial Intermediate Total

Affluent

Control 341 ± 166 3,448 ± 1,429 2,034 ± 369 4,520 ± 2,439

Qualitative 
restriction 254 ± 132 3,981 ± 591 1,758 ± 542 5,739 ± 313

Quantitative 
restriction 276 ± 94 3,239 ± 1,331 1,889 ± 296 5,127 ± 1,163

Chrome 260 ± 142 1,997 ± 989 1,264 ± 615 3,260 ± 915

Ractopamine 314 ± 162 5,033 ± 4,039 2,113 ± 299 5,284 ± 1,148

Effluent

Control 771 ± 256 2,489 ± 1,443 4,060 ± 1,707 6,549 ± 2,444

Qualitative 
restriction 525 ± 166 3,772 ± 1,145 9,722 ± 1,864 1,328 ± 1,942

Quantitative 
restriction 592 ± 217 1,484 ± 540 4,107 ± 1,701 5,592 ± 1,595

Chrome 621 ± 229 733 ± 693 2,255 ± 855 2,988 ± 593

Ractopamine 708 ± 315 1,337 ± 713 4,195 ± 1,534 5,310 ± 1,711
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The lower concentrations of ammoniacal N can be explained by the composition of 
the manure, which depends on the use of nutrients from food consumed by the animals. 
The formation of ammoniacal N occurs mainly in anaerobic environments, and it remains 
dissolved in the liquid phase of the manure; in the case of pig manure, the concentrations are 
high because the animals receive high amounts of organic N in their diets and are also more 
readily transformed into ammoniacal N (23).

The average TS content of the tributaries was 2.53%, and the total N content was 1.27%. 
It is possible that there was a difference in the C: N ratio of the tributaries since there was no 
difference in the total N content, but there was a difference in the VS content

The diets with Cr and ractopamine showed higher VS values in the effluents, which 
increased the chances of these tributaries producing more biogas than the other diets. The 
diet with qualitative restriction resulted in the lowest VS value in the affluent and the highest 
FS content. This tributary had the lowest total P content. The last two parameters indicated 
that the mineral profile of this effluent was different from that of the other diets; however, 
it was not possible to conclude whether its quality was superior or inferior. The minerals 
present in biodigester effluents can favor the growth of microorganisms and improve their 
metabolism, including the efficiency of the use of methane precursors (26, 27).

According to Zhang et al. (28), the pH under ideal conditions for anaerobic bacteria can 
vary from 6.0 to 8.0; therefore, these values are in the ideal range for microbial development, 
with 7.0 being considered ideal. In this range, the methanogenic phase is not compromised 
because the active bacteria grow better under neutral conditions (26, 27, 29, 30, 31, 32).

The effluents from the biodigesters did not differ in terms of TS, FS, or total N contents 
(Table 3). The average TS content of the effluents was 2.65%, FS was 0.99%, and TN was 1.26%. 
These values are close to those observed in the tributaries, with no apparent reduction. 
Differences in the levels of VS, total P, and pH of the effluents were observed. 

Table 3 Chemical characteristics, in percentages, of the affluents and effluents of digesters operated 
with manure from finishing pigs fed different diets

Dietas ST SV SF pH Total N Total P

Affluents

Control 2,44 1,50b 0,94b 7,36 1,30 2,17a

Qualitative restriction 2,40 1,22c 1,18a 7,46 1,38 1,45b

Quantitative restriction 2,44 1,58b 0,86b 7,36 1,18 1,96a

Chrome 2,57 1,70a 0,86b 7,36 1,25 2,00a

Ractopamine 2,82 1,91a 0,91b 7,39 1,23 2,00a

Mean 2,53 - - 7,39 1,27 -

P-value 0,07 <0,01 <0,01 0,15 0,93 <0,01

CV, % 10,64 14,72 12,73 0,98 13,60 11,13

Effluents

Control 2,19 1,38 b 0,81 6,64 b 1,46 2,28 a

Qualitative restriction 2,33 1,23 b 1,11 7,39 a 1,31 1,78 b

Quantitative restriction 3,07 1,99 a 1,10 6,51 b 1,30 2,26 a

Chrome 2,53 1,61 b 0,92 6,27 b 1,20 2,41 a
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Ractopamine 3,14 2,07 a 1,07 6,56 b 1,08 2,02 b

Mean 2,65 - 0,99 - 1,26 -

P-value 0,122 0,031 0,362 <0,001 0,926 0,014

CV, % 27,73 15,30 29,11 3,62 22,67 14,09

TS: total solids; VS: volatile solids; FS: fixed solids; pH: hydrogenionic potential; Total N: total nitrogen; total P: total phosphorus.
Lowercase letters in the column differ by the Scoot-Knott test (P<0.05).

Diets with quantitative restriction and ractopamine had higher VS levels (average, 
2.03%. The diet with qualitative restriction showed the highest pH value in the effluent (7.39), 
which implied that the medium was differentiated into nutrients. Its use may have led to 
the development of a population of microorganisms different from those found in other 
digesters. Diets with qualitative restriction and ractopamine had the lowest total P levels, 
averaging 1.90%.

The diet with qualitative restrictions led to a higher weekly biogas production and potential 
biogas production per unit of VS (Table 4). There was no difference in the accumulated weekly 
biogas yields between the digesters operated with manure from animals fed the control 
and quantitative restriction diets, which were higher than those obtained from the Cr and 
ractopamine diets. SANTOS et al. (33) observed higher biogas production after 14 days of 
ractopamine supplementation than with no supplementation and supplementation for 7 days. 

Table 4 Weekly accumulated production and biogas production potential of digesters operated 
with manure from finishing pigs fed different diets

Diets Biogas, mL week-1 Biogas, mL g-1 of added VS

Control 9,229b 305b

Qualitative restriction 14,670ª 574a

Quantitative restriction 5,286b 160c

Chrome 1,548c 104c

Ractopamine 2,335c 127c

P-value <0.01 <0.01

CV, % 5.98 31.49

Lowercase letters in the column differ by the Scoot-Knott test (P<0.05).

However the dosage of ractopamine used by the authors was 20 ppm, whereas in 
the present study, it was 10 ppm (for 16 days), suggesting that the concentration may be 
more important than the period of supplementation. The second-highest biogas production 
potential (in mL g-1 of VS added), 47% lower, was obtained from biodigesters operated with 
manure from the animals that received the control diet. The diets with quantitative restriction, 
Cr and ractopamine showed the lowest potential for biogas production, with an average of 
130 mL g-1 of VS added.

The diets fed to the animals were isoproteic, which might have led to similar levels of total 
N in the effluents and effluents of the biodigesters. The diet with qualitative restrictions was 
prepared with an energy content reduced by approximately 7%, which may have contributed 
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to this diet producing more biogas than the other diets did. This may have contributed to 
a different nutrient profile in the manure, and an effluent pH above neutrality may have 
favored the anaerobic digestion process (31, 34, 35).

4. Conclusion
The control diet had a higher residue coefficient than that of the other diets, which 

may have had a greater environmental impact because it produced a greater amount of 
residue. The qualitative feed restriction provides the highest biogas yield (mL g-1 of added VS), 
followed by the control, quantitative feed restriction, Cr, and ractopamine diets. Qualitative 
or quantitative restrictions, as well as Cr or ractopamine supplementation, reduced manure 
production per unit quantity of meat produced.
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