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Abstract: Inadequate management practices are the main factors that can cause pasture degradation, 
and one of the key factors is to understand the nutrient cycling in pasture ecosystems. This review 
aimed to describe the cycling processes of important nutrients in pasture ecosystems (nitrogen, 
phosphorus, and potassium), analyzing the interactions of soil-plant-animal components. The use of 
forage legume species intercropped with grasses is a strategy to increase the nitrogen content in 
the soil, minimizing costs with nitrogen fertilization in pastures. Manure and plant residues are great 
organic sources of phosphorus and potassium but are also fundamental for supplying microminerals. 
Nitrogen losses in pastures are mainly caused by leaching, runoff, and volatilization. The addition of 
phosphorus to the soil must be performed carefully, as there is an increase in phosphorus losses with 
increasing accumulation in the soil. Phosphorus is often returned to the soil far from where it was used, 
so the stock transfer represents a loss in pasture ecosystems that can account for approximately 5% 
of the inputs of phosphate fertilizers. Potassium losses mostly occur by leaching and runoff. Improving 
management practices is essential for balanced nutrient cycling in pasture ecosystems.

Keywords: animal excreta; fertilization; litter; nutrient cycling; soil nutrients.

Resumo: Práticas inadequadas de manejo são os principais fatores que podem causar a degradação 
das pastagens, e um dos fatores chaves é entender a ciclagem de nutrientes nos ecossistemas 
de pastagem. Esta revisão teve como objetivo descrever os processos de ciclagem de nutrientes 
importantes em ecossistemas de pastagem (nitrogênio, fósforo e potássio), analisando as interações 
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entre os componentes solo-planta-animal. Verificou-se que o uso de espécies de leguminosas 
forrageiras consorciadas com gramíneas é uma estratégia para aumentar o teor de nitrogênio no solo, 
minimizando os custos com adubação nitrogenada em pastagens campestres. Estrume e resíduos 
vegetais são as principais fontes orgânicas de fósforo e potássio. As perdas de nitrogênio nas pastagens 
ocorrem principalmente por lixiviação, escoamento superficial e volatilização. A adição de fósforo ao 
solo deve ser feita com cautela, pois há um aumento nas perdas de fósforo com o aumento de seu 
acúmulo no solo. O fósforo é muitas vezes devolvido ao solo longe do local onde foi consumido, de 
modo que a transferência de estoque representa uma perda nos ecossistemas de pastagem que pode 
representar aproximadamente 5% das entradas de fertilizantes fosfatados. As perdas de potássio 
ocorrem principalmente por lixiviação e escoamento superficial. A melhoria das práticas de manejo é 
essencial para uma ciclagem equilibrada de nutrientes em ecossistemas de pastagem.

Palavras-chave: ciclagem de nutrientes; excrementos animais; fertilização; nutrientes do solo; 
serapilheira.

1. Introduction
The biogeochemical cycle or nutrient cycling consists of a set of processes that involve the 

displacement, changes, and transformations of chemical elements in the different systems 
of the planet Earth: lithosphere, biosphere, hydrosphere, and atmosphere (1,2). In pasture 
ecosystems, mineral nutrient cycling plays a key role in plant nutrition, as the nutrients 
circulate through various compartments (soil-plant-animal-atmosphere), alternating between 
periods of availability or non-availability for plant uptake. Understanding the dynamics of 
each soil nutrient cycling in the pasture and how management practices can affect them is 
essential for the sustainability of pasture systems (3, 4).

Adequate soil management and nutrient inputs such as nitrogen, phosphorus, and 
potassium are essential for developing sustainable pasture-based livestock production 
systems. However, continuous nutrient inputs in agriculture systems can also generate 
serious environmental problems, ranging from local water and air pollution to global climate 
changes (5). Therefore, quantifying nutrient inputs and outputs is essential to the sustainable 
management of the pastures. 

To understand nutrient cycling in a pasture ecosystem, in addition to the evaluation of 
the inputs (fertilization, N2 fixation, supplementation) and outputs by the export of elements, 
it must be taken into account how these nutrients are lost and return to the environment 
(e.g., volatilization, leaching, runoff). Thus, this review aimed to discuss the nutrient cycling 
dynamics (input and outputs) of nitrogen, phosphorus, and potassium in tropical pastures, 
pointing out strategies to improve the efficiency of their utilization. 

2. Biogeochemical cycle of nitrogen, phosphorus, and potassium
Controlled by biotic and abiotic factors, the biogeochemical cycles, or nutrient cycling, 

consist of the flow of nutrients in the different compartments of an ecosystem. In pasture 
ecosystems, these compartments are the soil, plants, animals, and the atmosphere. The 
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availability of macro- and micronutrients in the edaphic environment is influenced by changes 
in one or more of these mentioned components (6). 

Nitrogen (N), phosphorus (P), and potassium (K) are macronutrients of relevant 
importance for plant nutrition and, consequently, for animal production(7). Nitrogen deficiency 
in soil is a force for the degradation of pastures since this compound is directly related to 
the synthesis of essential biomolecules in the plant, such as amino acids and nucleic acids. 
Phosphorus and potassium are important in plant metabolism, participating in different 
stages of photosynthesis and growth (8, 9, 10). The search for strategies that reduce pasture 
degradation and increase the productivity of the system requires knowledge about the 
cycling of these nutrients, especially the mechanism and pathway of their input and output 
in the biosystem(3).

3. Pathways of nitrogen input into the system
The largest reserves of nitrogen in pasture ecosystems are the soil, vegetation, herbivore 

residues, and the atmosphere (11). In most agricultural lands in the world, N is considered the 
most limiting nutrient for crops, especially in grass monocultures. This element is involved 
in the synthesis of amino acids and proteins used in various metabolic processes in plants. 
For plant species, such as C3 (e.g., forage legumes), which require a higher concentration of 
rubisco in their tissues, N content in tissue is so important that most of these forage species 
(e.g., legumes) have a symbiotic association with N-fixing bacteria to guarantee their N 
supply(12, 13). 

N can be naturally or artificially added to the soil of pasture ecosystems. In the first case, 
it is incorporated into the system via biological fixation, animal waste (urine, feces), litter 
deposition, rainfall, and atmospheric deposition(12, 13) (Figure 1). Although the atmosphere has 
a high percentage of N2 (78%) in its gas composition, the contribution to the supply of N for 
crops, including cultivated pastures, is considered very low(6, 11). The atmospheric deposition 
can occur via lightning or mineral-based reduction of N (13).

Figure 1 Inputs and outputs of N in pasture ecosystems. BNF=Biological nitrogen fixation. 
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The use of forage legumes in grass pastures is essential to add N to the systems via 
biological fixation of the atmospheric N2 (Figure 1), contributing to meeting part of the grass 
demands. It generally increases the production and persistence of the plants in the pasture, 
consequently improving animal nutrition and production(12). Forage legumes make the N 
available in the soil via biological fixation or during the decay of litter, roots, and nodules(14). 
The presence of legume species intercropped with crops or grass species can impact the 
soil microbiota; generally, the C: N ratio (carbon and nitrogen) of the litter is reduced, which 
can influence microbial activity and biomass(15, 16, 17). Many studies have shown the positive 
effects of adding legume species in grass pastures or intercropping with other crops and 
usually reported increases in forage production or reduction in the demands for inorganic N 
applications(14, 16, 18). 

Regarding N inputs to the soil via litter deposition, one of the most important indicators 
that reflect the litter quality is the C:N ratio, where plants with higher levels of N in their 
biomass, such as legumes, provide residues with a low C:N ratio, which results in rapid 
decomposition and, consequently, a higher rate of N mineralization for plants(19, 20). Dablin 
et al.(21) observed that adding legume trees in degraded tropical grass pastures significantly 
increased the total N contents of the litter in those pastures. Investigations led by Xavier et 
al.(22) showed that the use of legume trees in a silvopastoral system intercropped with the 
tropical grass Urochloa spp. increased both litter deposition and the N return to soil compared 
to the grass monocropping system.

Silvopastoral systems using legume trees can improve the efficiency of nutrient cycling 
and have the potential to recover degraded pastures and, at the same time, provide a forage 
with higher crude protein content(23, 24, 25). In addition to the C: N ratio, other factors in the 
litter must be considered to determine the mineralization of N in the soil, which includes 
the N profile of the decomposing material (NH3/NH3, amino acids, crude protein), lignin, and 
polyphenols content(26). According to Maluf et al.(27), the decomposition rate of plant residues is 
significantly influenced by N concentrations. The input of low-quality litter can be considered 
a major contributor to the increase in the degradation of tropical and subtropical pastures(11), 
as some of the required nutrients (e.g., microminerals) may take some time to be available at 
a specific time for plant growth.  

Another way of adding N to the pasture ecosystem is by using inorganic fertilizers, which 
can have a pronounced impact on N availability and plant growth responses because they 
generally display quick mineralization(28, 29). There are many sources of inorganic N fertilizers, 
for example, urea (CH₄N₂O), ammonium nitrate (NH₄NO₃), ammonium sulfate [(NH₄)₂SO₄], 
these differing in terms of N content, as also, in their availability and mineralization rates. 
Nevertheless, fertilizing pastures with inorganic N fertilizers is a relatively expensive 
management practice, with the potential to cause several environmental impacts via N 
leaching, accumulation (soil, water), and volatilization(30, 31, 32). The use of N fertilizers also 
has the potential to accelerate the litter decomposition rate of the pastures; Apolinário et 
al.(33) tested the effects of different levels of inorganic N on the litter decomposition of U. 
decumbens pasture and found a decrease in C: N ratio and an increase in the decomposition 
rate, as a function of inorganic N fertilizer.
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Another N input source to the soil of a grassland ecosystem is animal waste (urine, feces). 
The concentration of N in the feces and urine of grazing animals mostly depends on the content 
of these nutrients ingested in the diet. If it is a pasture-based diet, N is mostly recycled from the 
forage consumed; however, if the grazing animals receive some supplementation (e.g., urea, 
protein), the N ingested will be added to the pasture system via urine or feces. Animal waste 
deposition and distribution play a key role in nutrient cycling in pastures; in addition to the N, 
they add other compounds to the soil, such as sodium (Na) and potassium (K) – present mainly 
in urine – and phosphorus (P), calcium (Ca) and magnesium (Mg), released mostly via feces(6, 

34). Macro- and micromineral contents present in the wastes of grazing animals have different 
bioavailability to the plants, which is mainly associated with their mineralization rates by soil 
decomposers and interaction with other nutrients and soil pH(35, 36).

Grazing animals tend to deposit their wastes in very specific places, such as near water 
fountains and shaded places (e.g., below trees), resulting in the inefficiency of nutrient 
recycling and distribution, which may represent great losses of nutrients from the pasture 
ecosystem. It also causes higher concentrations of nutrients in certain places, which can lead 
to pollution or the absence of plant growth due to toxicity, for example. This means that 
animal grazing behavior directly affects the deposition of excreta and, consequently, the 
distribution of nutrients in the pasture, which can lead to an unbalanced distribution of the 
soil fertility between the different areas of the pasture(37). However, the use of intermittent 
grazing and other techniques, such as strategically moving animals in the pasture and 
spreading water fountains and shades, can help to reduce this unbalanced distribution of 
excreta in the pasture. 

4. Pathways of nitrogen output from the system
The biogeochemical cycle of nitrogen has many pathways for the output of this element 

from the pasture ecosystem. In addition to harvests and exportation by animal products, 
which are responsible for exporting large amounts of the nutrients contained in plant 
tissues(38), it is interesting to consider other factors that directly impact the availability of 
nutrients that can lead to significant losses of nitrogen, such as runoff, erosion, leaching 
[mainly as nitrate (NO3

-) in permeable soils], and volatilization [ammonia (NH3), molecular 
nitrogen (N2) and nitrogen oxides (NO, N2O)](39). 

Nutrients with high mobility in the soil, such as N, are easily leached, especially in deeper 
soils, being carried out by rainwater or irrigation. The faster the N leaches in the soil profile, the 
more difficult it becomes for crops with short root systems to uptake this element(3). The forms 
that N is absorbed by the plant root system are nitrate (NO3

-) and ammonium (NH4
+)(40), and it 

can also be absorbed in some organic forms (e.g., amino acids, peptides, nucleotides)(41).

Among the main factors influencing the dynamics of N, the C:N ratio of the soil organic 
matter (SOM) determines the decomposition rate, interfering with the mineralization or 
immobilization of N by soil microbes(42, 43). When microbial activity acts on the decomposition 
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of SOM, inorganic forms of nutrients are released, a process known as “mineralization.” 
However, it should be considered that microbes also can act as temporary sinks of N, as 
they can keep part of the N for their growth. When inorganic ions are converted into organic 
forms in the microbes (e.g., amino acids, enzymes), the process called “immobilization” 
takes place. A significant portion of N is immobilized by soil microbes for protein synthesis. 
Therefore, the decomposition of organic materials with low concentrations of N may lead to 
the unavailability of this element for both microbes and plants(39, 43). The immobilization of N 
by soil microbes may have an essential role in reducing the potential outputs that can occur 
in the free forms of N in the soil. 

Another way of extracting N from the soil is through crop harvesting. Menezes et al.(44) 
evaluated the extraction of N by corn fertilized with liquid pig manure and observed that 
the extraction of nitrogen in the aerial part 20 days after planting was 42 g of N per kg-1 of 
DM when using manure and 28 g of N per kg-1 of DM without residue application. During 
the plant’s vegetative development, especially during the exponential growth phase, dry 
matter accumulation can reach up to 70-80% of the total final dry mass, which requires large 
amounts of nutrients, especially N. Melesse et al.(38) reported concentrations of nitrogen in 
different forage species (grass and legumes) varying from 11 to 55 g.kg-1 DM. Some pasture 
management practices can intensify nutrient exportation (e.g., forage conservation) because 
it is common that a forage produced in a place will be consumed and excreted far from there. 

5. Pathways of phosphorus input into the system
Phosphorus (P) is an essential macronutrient for plant growth with high demand in 

agricultural production systems(45). In plants, P has many roles in the metabolism, including 
the composition of the DNA, cell division, early root growth, tillering, seed formation, 
photosynthesis, and respiration process (ADP, ATP), among others (9, 10). However, P levels in 
the soil of agricultural systems have been depleted or unavailable, becoming a worldwide 
problem(46, 47). Continuous P additions are necessary to maintain optimal production levels 
of the crops and pastures. Improving P availability and fertilization efficiency by reducing its 
losses can contribute to the sustainability of pasture ecosystems (48).

P management in pasture ecosystems is particularly challenging, given the diversity in 
pasture dynamics (soil type, plant and animal species, grazing methods), and the complexity 
of P cycling. For example, the manure produced by grazing animals is deposited in patches, 
usually close to resting places (drinkers, feeding stations, shades)(49), which can lead to a 
saturation of P deposited in some specific parts of the pasture. Furthermore, the manure that 
returns P to pasture (Figure 2) is spatially heterogeneous, making nutrient cycling difficult (50). 
Unlike nitrogen, P mobility in the soil is considered very low, and most P applied via inorganic 
fertilizers can quickly become unavailable to plants (47, 51). 
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Figure 2 Inputs and outputs of P in a pasture ecosystem. 

According to Sharpley et al.(52), a problem regarding the P cycle is the failure to recover 
and reuse P from manure and waste. Grazing animal wastes (urine and feces) can carry up 
to 81% of the P ingested(53). The content of P in animal wastes can improve the efficiency of 
the use of this mineral and reduce soil deficiency in pasture systems; however, it depends on 
the management strategies to improve its distribution(48). Kumaragamage and Akinremi(54), 
reported that the strategies to reduce P losses via animal waste include generating low-P 
manures, processing manure to reduce the total and soluble P, and adopting better 
management practices in terms of waste deposition or application. 

Furthermore, another factor that limits the use of P by plants is its availability. Inorganic 
P, as orthophosphates (e.g., PO₄3-)(55, 56), when added to soil, are immobilized in forms not 
immediately available to plants. When available, they are absorbed from the soil solution 
and incorporated into the plant or microbial biomass. In grazing systems, P is subsequently 
transferred to the plant-animal biomass and can be exported from the pasture ecosystem as 
an animal (or plant) product. The P in the pasture biomass is returned or mineralized in the 
soil via animal wastes, plant residues, and microbial biomass during their decomposition(57).

Manure and plant residues are organic sources of P for the soil and reduce the need for 
external P inputs through inorganic fertilizers(48). Also, biofertilizers applied to the pasture 
can add significant amounts of P(58). In addition, soil microbes decompose SOM, which is a 
significant source of slow-release organic P(59). Manure deposited by grazing cattle may have 
cumulative benefits of decreasing P sorption, thus improving long-term P cycling efficiency(48). 
In addition, the management of animals in the pasture can improve nutrient cycling. According 
to Assman et al.(60), mild grazing intensities result in a higher rate of P release from pasture 
and manure residues. 
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6. Pathways of phosphorus output from the system
Among P loss pathways in tropical pastures, fixation/adsorption emerges as an extremely 

important route for reducing P availability in these systems. The tropical climate favors the 
development of more weathered soils, resulting in predominantly acidic soils(61). In their clay 
fraction, several weathered soils contain iron (Fe) and aluminum (Al) oxides along with clays 
from the kaolinite group. Such components play a crucial role in fixing P in the soil since their 
charges are mainly positive in acidic environments, attracting a variety of anions, including 
phosphate (PO4

-3). 

P adsorption in soil can occur in three distinct phases: initially, the phenomenon occurs 
rapidly due to the presence of highly reactive oxyhydroxide sites, which exchange their OH- 
and OH2+ ligands. In the second phase, adsorption occurs in areas with lower reactivity. The 
third phase occurs slowly, characterized by P precipitation, as reported by Parfitt(62).

Among the features in soil, it has been reported that high contents of oxide can lead 
to intense adsorption of P, reducing the labile fraction of P(63). The presence of the group of 
phyllosilicates that encompass clay minerals such as kaolinite(64) and the group of Fe and Al 
oxyhydroxides (e.g., hematites, goethites, and gibbsites)(65) display great affinity for P due to 
the presence of hydroxyl in their active sites. According to Pavinato et al.(66), the Southern 
region of Brazil has the highest proportion of soils with high fixation capacity, as the soils in 
this region are mainly derived from basalt and contain large amounts of clay with Fe and Al 
oxides capable of fixing P.

In several areas of the Northeast region of Brazil, where the soils are characterized by 
the predominance of sandy particles, the P fixation rate is minor(67). Nevertheless, although P 
has low mobility in soils, loss through leaching or erosion (Figure 2) occurs more significantly 
in sandy soils than through fixation processes(68). In a general overview, in the Southeast and 
North regions of Brazil, P fixation shows medium to high values, respectively, due to the 
quantity and quality of the clay fraction, in addition to the base saturation level, which varies 
according to the pedogenetic factors of each soil(69).

Although organic matter (OM) initially contributed to the retention and stock of P, it is 
important to note that it also contains humic and fulvic acids, in addition to other organic 
anions. Furthermore, OM displays a significant presence of carboxylic groups (-COOH) that 
occupy adsorption sites on clays, and Fe and Al oxides in place of P(70). Thus, the presence 
of OM can raise the effectiveness of phosphate fertilizer, as organic acids will be released. 
These organic acids compete for fixation sites, increasing P availability for plants. However, it 
is important to highlight that the effectiveness of this process depends on the organic source 
used and its mineralization rate, which will be influenced by the type of soil and climatic 
conditions(71).

The soil pH is crucial, as it influences the availability of P in the solution. Weathered and very 
acidic soils, such as those found in humid tropical and subtropical regions, are characterized 
by significant fixation of considerable amounts of P(68). The effectiveness of phosphates is 
more pronounced when the soil pH is close to 6.5(72) due to the high concentration of iron and 
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aluminum oxides in acidic soils, substances that favor P adsorption. However, in alkaline soils, 
the predominance of calcium and magnesium carbonate can also restrict the availability of P, 
with a significant impact on absorption and use by plants(73, 74).

In Brazil, most soils have acidic characteristics with a pH of around 5.6,  associated with 
the weathering process and leaching of bases(69). Liming represents an alternative to mitigate 
the nutrient deficit from acidification in weathered soils with low pH, predominantly used in 
several crop systems in Brazil. This management technique makes it possible to adjust soil 
pH and reduce acidity. Liming can promote more favorable conditions for plant development 
by adjusting the acid-base balance to the pH range of 6 - 7, where most crops grow better due 
to the availability of most of the essential nutrients for plant growth(75, 76).

The place where P is deposited by cattle can strongly influence its retention in pastures 
(Figure 2). It is important to mention that P is often returned to the soil away from the area 
where it was consumed so that stock transfer between areas of the pasture can represent a 
loss of approximately 5% of P input requirements via fertilizers(77). 

Pastures under grazing conditions are a significant source of phosphorus input to surface 
waters. Nellesen et al.(78) observed a greater P loss in pastures with unrestricted access to 
streams. Effective P management strategies must involve techniques to reduce continuous 
soil trampling and excessive manure inflows into vulnerable sites. Keeping the vegetation 
cover of pastures can reduce losses in both particulate and dissolved P forms. The use and 
distribution of drinkers away from rivers and dams can reduce the time the animals remain 
in areas near watercourses and reduce the deposition of excrement in only one area(79). 
Another alternative to increase the homogeneity in excreta deposition on the soil is rotational 
grazing. This management, when well performed, can also be effective in reducing runoff and 
erosion of the pasture by reducing the impact of trampling(80). Management practices, such 
as adjusting stocking rates and grazing methods, distribution of shaded structures (e.g., trees 
and shelters) and supplement feeding sites, spreading drinkers, efficient fertilization, and 
forage diversity can affect the efficiency of nutrient cycling in pastures(81). Another pathway of 
P loss in a pasture ecosystem is crop exportation(44) in pastures; the exportation of nutrients 
can occur through animal products or when the forage is harvested and consumed far from 
the grazing systems it was planted/harvested. 

7. Pathways for potassium input into the system
Potassium is a macronutrient required in high amounts by crops because it plays 

important roles in regulating water flow, enzymatic activation, opening and closing stomata, 
and transporting carbohydrates(8). It is found available in the soil in the form of cation (K+), 
adsorbed, or in soil solution (Figure 3). It is absorbed by plants in the same form. Potassium 
is a nutrient mostly added to the pastures through fertilization, inorganic or organic, and also 
added by animal feeding or mineral supplements.  

The main sources of inorganic K fertilizers are KCl, K2O, and K2SO4
(82, 83). Organic fertilizers, 

especially animal wastes, are the main sources of recycling this element in the pasture 
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(70-90%). It can be returned to the pasture immobilized in organic matter or in ionic forms 
that are water-soluble and readily available for plant uptake. Therefore, the dynamics of this 
nutrient in the soil and its cycling depend on the type of production system. According to 
Assmann et al.(60), pasture and manure residues can release K in a high proportion, and, unlike 
P, potassium availability is not much influenced by grazing intensity. K availability essentially 
depends on soil reserves and fertilizer applications. In soils with low cation exchange capacity 
(CEC), as in most Brazilian soils, there is considerable leaching of this nutrient(84).

Figure 3 Inputs and outputs of K in pasture ecosystem.

Similar to what was described for N and P, another input route for K in pasture ecosystems 
is through animal supplementation, using both animal feed and mineral supplements (Figure 
3). The K content in most grasses and legumes ranges around 30-40 g. kg-1 DM(38), which can 
represent a significant intake of this nutrient by grazing animals. Considering an animal unit 
(453.5 kg) consuming, for example, 12 kg DM per day, its intake of K can range around 360-
480 g per day. Another source of K input into the pasture is biofertilizers; Coelho et al.(58) 
reported K values ranging from 7 to 119 g. kg-1 DM in different biofertilizers. 

8. Pathways of potassium output from the system
As K is one of the main minerals in the forage(39), significant amounts of this nutrient can 

be exported during harvesting and also by the exportation via animal products (e.g., milk and 
meat)(85, 86). Understanding the uptake rate and the total amount of K accumulated in crops 
during the growing season and its removal during harvest is necessary to assess the outputs 
of this element from the grazing system.

Potassium can also leave the grassland ecosystem through leaching or runoff due to 
its high solubility (Figure 3). Furthermore, as K is bound to clays and organic materials and 
adsorbed on fine soil particles, it can be eroded by runoff water and carried out by strong 
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winds (e.g., ashes after burning pasture biomass)(87, 88, 89). Soil particles eroded from the field 
carry adsorbed K with them. Water erosion occurs mainly on the soil surface or at shallow 
depths by runoff, but particles can also be transported to depth and lost via field drains(87).

K losses through runoff depend on rainfall intensity, the timing of precipitation events, 
the K fertilizer management, and the cation exchange capacity of the soil(90, 91). Significant 
losses of this nutrient may occur due to its presence in crop residues and at the surface 
layer of the soil. K can occur free in plant tissues, which facilitates removal by water after 
senescence(92). K is a nutrient that can leave the pasture ecosystem through wind erosion. 
The stronger the wind speed, the more the soil is prone to erosion(33), especially small dry 
particles(93,94). 

In a silvopastoral system with signal grass (Urochloa decumbens) and the legumes gliricidia 
(Gliricidia sepium) and sabiá (Mimosa caesalpiniifolia) in Itambé, state of Pernambuco, Herrera 
et al.(95) reported a reduction in soil K+ from 2013 to 2017, associated with pasture and trees 
development over time. The greater extraction of K+ may be due to the higher accumulation 
of this nutrient in the biomass components, with younger trees showing a higher demand for 
nutrients in leaves and branches(96,97). Furthermore, estimates indicate that K+ can be stored 
at approximately 0.8 (16 g kg-1) and 0.7 Mg ha-1 (14 g kg-1) in the biomass of gliricidia and 
thrush, respectively (98, 99).

The development and implementation of best management practices for fertilizer use, 
with a focus on source, rate, timing, and placement, are necessary for the short term to 
increase the productivity and economic return of fertilizer inputs(100). The source of K must 
be a factor to be adjusted in fertilizer recommendations to limit its losses in pastures. For 
example, the use of slow-release (polymer-coated) KCl can reduce K leaching compared to 
traditional KCl; however, the slow-release rate may not be sufficient to meet crop demands 
for K(101). It is known that when K fertilizers are applied by surface diffusion, the presence of a 
cover crop can reduce K runoff losses(74).

9. Conclusion
Nutrient cycling between different compartments is characteristic of pasture ecosystems. 

The analysis of nutrient dynamics in pastures must take into account inputs and losses 
of elements and their biogeochemical cycles. Manure and litter are the main sources for 
returning nutrients to the pasture ecosystem, which occurs through decomposition by 
microorganisms. Knowledge of the factors that control the release of nutrients from litter and 
manure in pastures, combined with the study of nutrient loss mechanisms, can contribute to 
making more sustainable management systems.

There is more than one route for nutrients to enter the pasture ecosystem. Nitrogen can 
be incorporated through biological fixation, litter deposition, animal excrement, rainfall, and 
atmospheric deposition. Among the main routes of nutrient loss are erosion, leaching, runoff, 
and volatilization. In addition, the extraction of nutrients by plants and their consumption 
by grazing animals is also a considerable variable in the output of nutrients from pastures 
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via product exportation. The redistribution of nutrients can be influenced by grazing, 
consumption, pasture defoliation, and their return to the soil via excreta. Management 
practices such as adjustment of the stocking rate and grazing methods and the distribution 
of shaded structures supplement feeding structures, and drinkers can affect the efficiency of 
nutrient cycling in pastures.
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