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Abstract
The objective of this study was to evaluate the influence of thermal shock on oocytes used in the production of in vitro embryos
(IVP) of high productivity Holstein cows on the day of follicular aspiration (OPU; 0), 30, 60 and 90 days before the OPU. From the
mean temperature on day 0 and on the previous 30, 60 and 90 days, they were classified into comfort group (TC; up to 15°C) and
heat stress (HS; above 15°C) groups. A negative influence was observed on oocytes and viable embryos (total and grade I). The heat
stress in the periods of 30 and 60 days prior to OPU resulted in lower production of viable oocytes (P=0.0028; P=0.0092,
respectively). Under stress, on the day of OPU (HS-OPU), cows showed no reduction in the amount of viable oocytes (P=0.5497)
and there was no influence of temperature for the group stressed 90 days before OPU (P=0.8287). For total embryos, the difference
occurred only in the HS-30 group (P=0.0317), where the groups HS-OPU, HS-60, HS-90 presented, respectively, P=0. 1987,
P=0.0596 and P=0.4580. Regarding the production of embryos of grade 1, there was no difference for the groups HS-OPU
(P=0.2291) and HS-90 (P=0.2868), but there was a reduction for HS-30 (P=0.0143) and HS-60 (P=0.0253). In summary, heat stress
had a negative impact when it occurred 30 or 60 days before follicular aspiration. In addition, 30 days seems to be the period of
more susceptibility and that causes the greatest deleterious effects on oocyte viability and IVP.
Keywords: Hyperthermia; Thermal shock; Ovum Pick Up; Dairy cows.

Resumo
Objetivou-se avaliar a influência do estresse térmico em oócitos utilizados na produção in vitro de embriões (PIV) bovinos da raça
Holandesa de alta produtividade no dia da aspiração folicular (OPU; 0), 30, 60 e 90 dias antes da OPU. A partir da temperatura
média no dia 0 e aos 30, 60 e 90 dias anteriores, foram classificados nos grupos conforto (CT; até 15°C) e estresse por calor (ET -
acima de 15°C). Observou-se influência negativa em oócitos e embriões viáveis (total e grau I). A submissão ao estresse térmico
nos períodos de 30 e 60 dias anteriores à OPU resultou em menor produção de oócitos viáveis (P=0,0028; P=0,0092,
respectivamente). Sob estresse, no dia da OPU (ET-OPU), as vacas não apresentaram redução na quantidade de oócitos viáveis
(P=0,5497) e não houve influência da temperatura para o grupo estressado 90 dias antes da OPU (P=0,8287). Para embriões totais,
a diferença ocorreu apenas no grupo ET-30 (P=0,0317), onde os grupos ET-OPU, ET-60, ET-90 apresentaram, respectivamente,
P=0,1987, P=0,0596 e P=0,4580. Em relação à produção de embriões grau 1, não houve diferença para os grupos ET-OPU
(P=0,2291) e ET-90 (P=0,2868), porém houve redução para ET-30 (P=0,0143) e ET- 60 (P=0,0253). Em resumo, o estresse por calor
teve impacto negativo quando ocorreu 30 ou 60 dias antes da aspiração folicular. Além disso, 30 dias parece ser o período de maior
suscetibilidade e que causa os maiores efeitos deletérios na viabilidade oocitária e na PIV.
Palavras-chave: Hipertermia; Estresse térmico; Aspiração Folicular; Vacas leiteiras.
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Introduction
Considerable changes have typified the dairy

production chain in recent years, although production
has been expanded, it was possible to observe a
significant drop in the number of producers and animals
(1). The number of cows milked in 2020 was 16.2
million, a decrease of 0.8% compared to the previous
year, however, the productivity per animal increased
and reached 2.192 liters/cow per year (2). Presumably,
this growth is mainly due to the genetic improvement of
these animals through the introduction of technologies
that increased productivity (3), including in vitro embryo
production (IVP) (4).

IVP is widely applied in animals of high
zootechnical value as it maximizes the reproductive
potential of the herd (5) and increases productivity per
animal by replacing the herd with genetically improved
descendants within a short period of time (4). Thus, it is
possible for a female to generate an average of thirty-six
offspring per year, while naturally she would only
generate one (6).

European bovine breeds are highly selected for
dairy production, among these, the Holsteins stand out
for its productivity and for being cosmopolitan (7).
However, taurine cows are less resistant to
hyperthermia when compared to Bos taurus indicus
breeds, due to their lower heat dissipation capacity to
the environment (8). In this context, Brazilian climate
may eventually expose these animals to high
temperatures and relative humidity, in addition to the
high incidence of solar radiation, in order to cause a
breakdown of body homeostasis, negatively impacting
both the productive and reproductive performance of
the herd (9).

The climatic conditions imposed on the matrices
influence the IVP, where embryonic development is
compromised by the high sensitivity to high
temperatures presented by both oocytes and embryos
(10). These conditions associated with the high metabolic
levels of high-producing cows (8) make Holstein cows
more susceptible to heat stress and, consequently,
oocytes have a lower capacity to generate blastocysts
(11).

Therefore, this study aimed to evaluate the
influence of room temperature on the day of OPU (0)
and the mean temperature 30, 60 and 90 days before the
procedure on the viability of the produced oocyte. In
addition, the in vitro production of total and grade I
embryos from oocytes subjected to in vivo heat stress on
day 0 and in the periods of 30, 60 and 90 days prior to
the procedure was compared.

Material and methods
Animals

The present study used data collected from June
2018 to August 2019 on the in vitro production of
embryos from a commercial laboratory. All data came
from a single dairy farm, located in the city of
Carambeí, state of Paraná, Brazil, at coordinates
24°47'02.0''S, 50°12'30.5W. The information regarding
the classification of oocytes and embryos from 326
dairy cows, aged between 4 and 14 years old, were
allocated in a Microsoft Excel 365® program
spreadsheet, adopting as exclusion criteria cows whose
average lactation in 305 days was less than 8,000 kg of
milk. The herd remained confined in a Free Stall system
with ventilation and water sprinkling and presented a
general average production of 42 kg milk/day/animal
and was homogeneous in terms of body condition,
which was classified as excellent.

Regarding the number of oocytes collected,
among the three hundred and twenty-six matrices
classified as high production (n=326), 138 cows were
allocated in the group called thermal comfort on the day
of OPU (TC-OPU) and 186 in the group of heat stress
(HS-OPU); thirty days before OPU 144 were in comfort
group (TC-30) and 182 in heat stress (HS-30); at sixty
days 142 (TC-60) and 183 (HS-60); and at 90 days 85
(TC-90) and 238 (HS-90). This is a retrospective study,
so there was no need for approval by an ethics
committee.

Temperature and humidity

From a report published by the National
Institute of Meteorology of Brazil (NIMET), the
averages of temperature and relative air humidity were
obtained for the day of follicular aspiration (OPU), at
30, 60 and 90 days prior to the procedure. Based on this
information, the matrices were classified into a control
group and a heat stress group at 0, 30, 60 and 90 days
before aspiration. The temperature range defined by
Klein (12) as ideal for high-yielding Holstein cows is
between 4 and 15°C. The average relative humidity
limit cited as ideal for animal welfare is between
50-90% (13).

In the present study, since the average data of
Relative Humidity, obtained on the day of the OPU
(83.8ºC ± 6.9), at 30 (81.1ºC ± 4.5), 60 (81.5ºC ± 8, 2)
and 90 (81.3 ºC ± 7.9) days prior to the process
remained very close, and with a small standard
deviation (<10%), only the average temperature
variable was fixed for data analysis, calculated for each
of the groups (0, 30, 60 and 90 days). Thus, animals
exposed to an average temperature above 15°C were
classified as the heat stress group, and those within the
comfort range (up to 15°C) were called the control
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group (thermal comfort).

Data analysis

Statistical analysis used the Anova TwoWay test,
with the aid of the Graphpad Prism 8® software. Firstly,
for each period (day 0, 30, 60 and 90) a control group
and a stress group were compared. In addition,
simultaneous comparisons were established between all
TC and HS groups with all periods (day 0, 30, 60 and
90). This methodology was applied to each variable
studied (viable oocytes, total and grade I embryos).

Finally, to increase accuracy, the T-Student test
was used, which compared the number of viable
oocytes aspirated in the comfort versus heat stress
group for each period (0, 30, 60 and 90). Furthermore,
using the same methodology, total and grade I embryo
production were compared in the control and stress
groups.

Results
When applying the Anova Two Way test, the

influence of temperature on the production of oocytes (P
= 0.0012), total embryos (P = 0.0024) and grade I
embryos (P = 0.0003) was observed. In the case of
oocytes, the impact of temperature was pronounced for
a period of thirty days; the TC-30 and HS-30 groups
differed from each other and from the other groups by
the Anova test. That is, cows subjected to heat stress
thirty days before follicular aspiration produced viable
oocytes in a significantly lower quantity than those
observed in the other evaluated groups.

Regarding the Student T test, the submission to
heat stress in the periods of 30 and 60 days prior to the
OPU resulted in lower production of viable oocytes for
the stressed group (P = 0.0028; P = 0.0092,
respectively). When under heat stress on day 0 (HS-
OPU), cows showed no reduction in the number of
viable oocytes (P = 0.5497), as well as no influence of
temperature for the stress group in the period of 90 days
before OPU (P = 0.8287). The results on oocyte
production analyzed by the T test are shown in Figure
1.

For total embryos (Figure 2), the difference
occurred only in the HS-30 group (P = 0.0317), as the
HS-OPU, HS-60, HS-90 groups showed, respectively, P
= 0.1987, P = 0.0596, P = 0.4580.

Regarding the production of grade 1 embryos
(Figure 3), there was no difference for the HS-OPU (P
= 0.2291) and HS-90 (P = 0.2868) groups, however
there was an expressive divergence for HS-30 (P =
0.0143) and HS-60 (P = 0.0253).

Figure 1. Number of viable oocytes produced by the comfort
and heat stress groups on the day of OPU and at 30, 60 and 90
days prior to the procedure.

Figure 2. Number of total embryos produced by the groups in
comfort and heat stress on the day of OPU and at 30, 60 and 90
days prior to the procedure.

Figure 3. Number of Grade 1 embryos produced by the groups
in comfort and heat stress on the day of OPU at 30, 60 and 90
days prior to the procedure.

Discussion
It is known that high temperatures negatively

impact the oocyte quality of Bos taurus cows, which
consequently hinders embryonic development in vitro (14,15).
During the period when temperatures decrease, it is
possible to observe a greater quantity (14) and quality of
oocytes, which in turn provides better embryonic
development (15). Furthermore, high-yielding Holstein cows
are more prone to heat stress and when subjected to high
temperatures they reduce the conception rate in vivo (16).
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In the present study, when evaluating 326 high-
yielding Holstein animals in excellent body condition, it
was shown that temperature has an influence on oocyte
viability as well as on in vitro embryo development and
on the quality of the generated embryos. Thus, it was
possible to identify the periods in which the dairy farmers,
subjected to heat stress, suffered a negative impact on the
in vitro production of embryos.

The group exposed to heat stress 90 days before
follicular aspiration did not differ statistically from the
comfort group for any of the evaluated classes. However,
for the period of 60 days, oocyte viability was higher in
the TC group. These data are in line with information
generated by Britt (17), who indicated an estimated time of
60-80 days for the development of follicles from
recruitment (primary phase) to maturation.

Therefore, the fact that there was no divergence
between the HS-90 and TC-90 groups can be explained by
the fact that exposure to high temperatures occurred in a
time interval greater than that necessary for follicular
growth, so that there was enough time for the emergence
of healthy follicles. Despite this, there are reports of the
residual effect duringAutumn due to the stress suffered in
Summer (18), which triggers a low rate of blastocyst
production in up to 105 days post-stress (19).

When the follicle is exposed to adverse conditions
in the initial period of growth, gene expression can be
affected, causing developmental changes and generating
dysfunctional mature follicles with poor quality oocytes
and corpus luteum (17). intense transcription and
translation in oocytes (20). Therefore, there are reports of
downregulation during the summer in the expression of
genes associated with oocyte maturation (BMP15; GDF9
and FGF 8, 10, 16 and 17), as well as those related to
early embryonic development (GAPDH, GDF9 and
POU5F1) 21.

Furthermore, the onset of follicular development is
characterized by a high rate of granulosa cell mitosis,
which remains high until the follicle reaches diameters
between 0.68 – 1.52 mm and reaches the peak of mitotic
activity (22). Since then, follicular development is based on
the exponential growth of the antrum (22).

In this context, high temperature reduces the
viability of theca and granulosa cells, causing low
production of androstenedione and estradiol (23, 18). There
is divergence of data in the literature on the alteration
caused in gonadotropins, however most of them suggest
that there is a reduction in plasma (24,19) and follicular
inhibin levels (23), increase in FSH concentration (24) and
blockade of the preovulatory wave of LH (25).

In contrast, an increase in LH concentrations has
already been observed (26), and in relation to the pattern of
secretion, a decrease in amplitude (27)and frequency (28) has
also been reported for LH pulse. Perhaps these

discrepancies are explained by preovulatory estradiol
levels, since the amplitude of GnRH-induced
preovulatory LH tonic and plasma pulses are decreased in
cows with low plasma estradiol concentrations, but not in
cows with high concentrations (27).

These endocrine changes can interrupt follicular
development through immediate (29) or delayed effect, as a
residual effect on steroidogenesis of up to 26 days in
Holstein cows has already been found, even after brief
exposure to HS for 5 days (30). Furthermore, reduced
androgen levels can result in early follicular atresia (30).
Ferreira et al. (11) reported a lower quantity of viable
oocytes than those collected at the same time in the cold
season, indicating lower competence of oocytes under
heat stress.

The deleterious effects caused by high
temperatures on the functioning of the reproductive
system can last for months (31), however, for the follicle to
develop from the appearance of the antrum to the
preovulatory stage (0.13 mm to 8.56 mm), approximately
42 days are needed, that is, 2 estrous cycles (22).

Nevertheless, Al-katanani et al. (32), when studying
cows under heat stress throughout summer, did not find
any reduction in thermal effects on oocyte quality after the
animals were cooled for a period of 42 days before
colecting gametes, indicating that the damage to the
oocyte occurs in a period longer than 42 days, that is,
before the antral period. Thus, this information
corroborates the dissimilarity found between the groups
TC-60 and HS-60, showing that HS causes deleterious
effects when there is exposure 60 days before OPU. These
findings are in addition to those of Fialho et al., (33), who
found a reduction in the viability of cumulus oocyte
complexes with exposure for 60 days in animals of
Pantaneira breed.

When the period of exposure coincides with the
beginning of nuclear maturation, the generated embryos
may fail in genomic activation and, consequently, in
developing for the compact morula and expanded
blastocyst stages (34). The connection of gap junctions of
cumulus cells is highly related to the chromatin state and,
upon uncoupling these channels, degradation of the
germinal vesicle is observed (35,36). Thus, high
temperatures during maturation have a negative impact on
gap junctions, causing acceleration in oocyte chromatin
condensation and damage to later development (37).

In this study, although the number of total embryos
did not differ in cows in thermal comfort compared to
those subjected to high temperatures 60 days before OPU,
the number of grade I embryos was higher in the TC
group, suggesting that the low oocyte competence caused
by heat stress does not significantly influence the amount
of embryos produced, but it does affect their quality.

In vivo studies show that under heat stress heifers
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generate fewer embryos rated as excellent/good and more
abnormal and development-retarded vesicles (38).
Abnormalities such as extruded or degenerating
blastomeres from the cell mass, presenting irregular shape
and a dark, granular appearance may be observed (39).

Furthermore, oocytes obtained in winter have dark
and homogeneous cytoplasm, while those retrieved in
summer may be dark and heterogeneous. These
irregularities are caused by lipid modifications triggered
by heat stress (40). The authors observed that during
summer, oocytes, granulosa cells and follicular fluid had
a higher percentage of saturated fatty acids, while in
winter, oocytes and granulosa cells had a higher
percentage of polyunsaturated fatty acids.

Saturated fatty acids can increase cell membrane
stability, while unsaturated ones cause a decrease in
stability (41). The saturated form still inhibits the survival
and proliferation of granulosa cells in high-yielding
cows(41). Thus, temperature can influence the biochemical
properties of the oocyte membrane and this, in turn,
influence functionality and fertility, causing a negative
impact on the ability of gametes to develop to the
blastocyst stage during hot periods (40).

Perhaps, the dissimilarity observed between grade
I embryos and not total embryos is due to the fact that
oocytes submitted to HS in vivo remain able to be
fertilized and undergo the initial cleavages in vitro,
however, the quality is reduced. For heifers, the
fertilization rate is similar in thermoneutral and heat-
stressed groups (34), suggesting that, depending on the
degree of stress, fertilization is not affected, or that no
changes were observed because they are heifers, which
are less susceptible to stress than lactating cows.

Matured oocytes (42,43), as well as those fertilized in
vitro (44) under heat stress result in a lower cleavage rate
and low capacity to develop to a blastocyst (42,44,43).
However, Ferreira et al. (11)when collecting oocytes from
high-yielding Holstein cows from mid-summer, that is,
from animals subjected to high temperatures for more
than thirty days, found similar in vitro cleavage rates
between the summer and winter groups, but the amount of
blastocyst was reduced. Al-Katanani et al., (32) found
results similar to Ferreira et al. (11), therefore, some
component of the embryo formed from the oocyte was
damaged by HS (32,29).

The group submitted to heat stress 30 days before
follicular aspiration showed oocyte viability (grade I, II
and III), as well as significantly lower total and grade I
embryo production in the stressed groups. The data
obtained in this study are in accordance with information
found in literature, where the low competence of oocytes
from Holstein cows during periods with high
temperatures is known (32,29).

Although HS can lead the oocyte to apoptosis both

in the maturation phase and in the early stages of
development (45), the indication of the thermal influence
on oocyte viability through the Anova test in a 30-day
previous exposure suggests that this time interval is the
most critical point and the one with the greatest
susceptibility to heat stress, since the test has less
sensitivity, that is, HS-30 and TC-30 differed significantly
from each other and from the other groups, so that it was
possible to detect the thermal impact within a period of
thirty days.

By submitting Holstein heifers to HS for 10 hours
before insemination, an increase in the incidence of
abnormal or retarded embryos was observed, indicating
the sensitivity of oocytes to HS in the periovulatory
period (34). Bovine oocytes subjected to heat shock during
maturation undergo cellular changes that result in the
delay and/or the interruption of embryonic development
(45), as it coincides with the initial stages of nuclear and
cytoplasmic maturation (46).

The exposure time of the HS-30 group is in
accordance with the final growth period mentioned by
Lussier et al. (20). The decline in embryo productivity
caused by exposure to hyperthermia in this period is
possibly due to the inhibition of protein synthesis (47) and
the resumption of meiosis to metaphase II (48), since the
meiotic process is extremely sensitive to high
temperatures (34). In vitro, this disruption of nuclear
maturation is seen in bovine oocytes under heat stress (49).

HS blocks the progression from meiosis I to
meiosis II and increases the proportion of apoptotic
oocytes, thus compromising fertilization rates (49).
Furthermore, in addition to the maternal genetic material,
the oocyte provides the embryo with organelles,
messenger RNA and other macromolecules essential for
embryonic development (29). Thus, the initial period of the
embryo depends on the mRNA from the oocyte for
protein synthesis (29) and any intervention in this
transmission process causes irremediable damage to the
embryo (14).

The group submitted to heat stress on the day of
follicular aspiration did not differ from the control group
in the production of viable oocytes, total embryos and
grade I embryos. Similar study developed with Pantaneira
cows by Fialho et al. (33), showed no change in the viability
of cumulus oocyte complexes when stress occurred only
on the OPU day. It is possible that the period of heat stress
of just one day was not enough to trigger deleterious
effects, or that there was no time necessary for the
expression of negative effects, which was later manifested
as it occurs in long-term stress during the summer. Roth
et al. (50) demonstrated that under heat stress cows during
the summer have a delayed effect during the fall with a
decrease in oocyte quality and embryonic development.

Therefore, techniques to prevent heat stress in
high-producing animals and reduce the negative impact
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on in vitro embryo production must be thoroughly studied
and analyzed for their feasibility for the introduction in
preventive management. It is noteworthy that several
weeks are required for the compromised follicles to
ovulate or suffer atresia, thus fertility is not restored until
damaged follicles are removed (29). Genetic improvement,
with the introduction of thermotolerant genes, is a
possibility that should be studied further (31). In addition,
another option would be the use of antioxidant substances
in animal feed (31) or their addition in the in vitro
environment, since heat stress generates excessive
production of reactive oxygen species (ROS's),
compromising the function of the oocyte (51).

Conclusion
High-yielding Holstein cows are more susceptible

to damage caused by high temperatures in reproductive
performance. However, exposure to heat stress on the day
of OPU and 90 days before did not impact oocyte
viability, embryo quality and quantity. On the other hand,
as the exposure period approaches follicular aspiration
(60 and 30 days before), the damage becomes more
evident. New studies must be developed in order to
evaluate ways to reduce the thermal effects on embryo
production in high-yielding Holstein cows. In this
context, the use of animals bearing genotypes more
resistant to the effects of heat, as well as the adoption of
diets rich in antioxidants can be considered.
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