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Abstract
Conjugated linoleic acid (CLA) is a mixture of positional 
isomers of linoleic acid found in meat and dairy products from 
ruminants. It is a trans fat widely used by athletes as a food 
supplement, due to a supposed effect of maximizing the use 
of body fat reserves. The interest in diet and culture media 
supplementation with CLA is an emerging area, demanding 
studies in order to elucidate its benefits in the reproductive 
parameters, as well as in cryopreservation. Therefore, the aim 
of this review was to discuss the effects of CLA on the oocytes, 
sperm and embryos cryotolerance. Some studies have 
already demonstrated its use in cryopreservation of germline. 
Among those, it was observed that CLA supplementation 
during oocyte in vitro maturation can increase their viability 
post-freezing and developmental capacity. Regarding the use 
of CLA on sperm, there are few studies and their results are 
still inconclusive. Finally, studies about CLA supplementation 
on embryo culture media have shown promising results, 
indicating that this bioactive molecule is able to modulate 
lipid uptake on blastomeres. Altogether, these findings 
demonstrate the potential use of CLA as a bioactive molecule 
to improve germline and embryo cryotolerance and open 
new perspectives on human and animal reproduction field.
Key-words: lipid accumulation, cryopreservation, embryo, 
oocyte, sperm.

Resumo
O ácido linoleico conjugado (CLA) é uma mistura de isômeros 
posicionais do ácido linoleico encontrado em carne e 
laticínios de ruminantes. É um tipo de gordura trans muito 
utilizada por atletas para como suplemento alimentar 
devido a um suposto efeito de maximizar a utilização das 
reservas de gordura corporal. O interesse na suplementação 
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de dietas e meios de cultura com o CLA é uma área emergente, 
exigindo estudos para elucidar seus benefícios nos parâmetros 
reprodutivos e na criopreservação. Dessa forma, o objetivo dessa 
revisão foi discutir os efeitos do CLA na criotolerância de oócitos, 
espermatozóides e embriões. Alguns estudos já demonstraram seu 
uso na criopreservação da linhagem germinativa. Entre esses, foi 
observado que a suplementação de CLA durante a maturação in 
vitro de oócitos pode aumentar sua viabilidade pós-congelamento 
e capacidade de desenvolvimento. Em relação ao uso de CLA no 
esperma, existem poucos estudos e seus resultados ainda são 
inconclusivos. Por último, estudos sobre a suplementação de CLA em 
meios de cultura de embriões mostraram resultados promissores, 
indicando que essa molécula bioativa é capaz de modular a captação 
de lipídios em blastômeros. No total, essas descobertas demonstram 
o potencial uso do CLA como uma molécula bioativa para melhorar 
a linha germinativa e a criotolerância ao embrião e abrir novas 
perspectivas no campo da reprodução humana e animal. 
Palavras-chave: acúmulo lipídico, criopreservação, embrião, oócito, 
sêmen.

Introduction

Cryopreservation is a process that preserves organelles, cells, tissues, or any other 
biological constructs by cooling the samples to very low temperatures (1). It occurs because 
the biological metabolism in living cells decreases dramatically at low temperatures, 
which enables the long-term preservation of living cells and tissues for scientific research 
or for many medical applications. However unprotected freezing is normally lethal (2). A 
major challenge for cells during this process is not the low temperatures (below -180 °C) 
during the storage; contrarily, is the lethality of an intermediate temperature zone (-15 
to -60 °C) that a cell must pass through twice – during cooling and heating (3). The speeds 
of cooling and thawing can largely affect physicochemical and biophysical reactions, 
affecting the survival rate. 

Moreover, cryogenic lesions involves osmotic rupture, caused by high concentrations 
of solutes and the formation of extra and intracellular ice crystals (2). To mitigate these 
harmful effects, cryoprotectants are normally used in order to increase the total 
concentration of all solutes in the system and reduce the amount of ice formed at any 
temperature. To be biologically acceptable, cryoprotectants must be able to penetrate 
cells and have low toxicity (1,2). Many compounds have these properties, including glycerol, 
dimethyl sulfoxide, ethanediol, and propanediol. Regardless of the cryopreservation 
technique, whether it allows freezing (conventional cryopreservation) or preventing 
freezing (vitrification), the cryoprotectant must access all cell components (2). However, 
barriers such as cell membranes and intracytoplasmic lipid droplets, compromise 
diffusion and osmosis, interfering with the introduction and removal of cryoprotectants 
during freezing and thawing. Thus, the modulation of membrane properties and the 
amount of intracellular lipids can improve the efficiency of cell survival during the 
cryopreservation process. 
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In this regard, studies about diet and in vitro culture media supplementation with fatty 
acids, such as conjugated linoleic acid, have been used as a strategy to modulate the 
composition of the membrane and the amount of intracytoplasmic lipids, aiming to 
improve the efficiency of cryopreservation of gametes (4, 5)  and embryos (6, 7). Considering 
this scenario, the aim of this review is to provide a state of art about the use of CLA on 
germline and embryo cryopreservation, describing the main findings published in this 
field.

1. Conjugated linoleic acid (CLA) biological synthesis 
Conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric 
isomers, characterized by having conjugated double bonds, not separated by a 
methylene group as in linoleic acid. These double bonds are usually located at positions 
8 and 10, 9 and 11, 10 and 12, 11 and 13, and can occur in cis-cis, trans-cis, cis-trans and 
trans-trans configuration (8). Among all possible combinations with these characteristics, 
only two have proven bioactivity (cis-9, trans-11 CLA, and trans-10, cis-12 CLA), reducing 
carcinogenesis (9), anti-obesity effect (10, 11, 12), changing the lipid composition of bovine 
milk (13), affecting positively on diabetes mellitus, as well as improving immune response 

(14). These isomers can be synthesized in the rumen, adipose tissue and mammary gland, 
in a process known as endogenous synthesis.

1.1. Ruminal synthesis
The synthesis of CLA in the rumen occurs through incomplete biohydrogenation 
of polyunsaturated fatty acids from the diet by ruminal microorganisms (15). This 
event requires prior lipolysis of fatty acids esterified in the form of triglycerides, 
phospholipids and galactolipids, by microbial lipases present in the rumen. The 
unsaturated free fatty acids from lipolysis are then subjected to biohydrogenation. 
During the biohydrogenation process of linoleic acid, the cis-9, trans-11 isomer is the 
first intermediate formed by ruminal bacteria. The Δ12 cis, Δ11 trans isomerase enzyme 
catalyzes the isomerization of linoleic acids to cis-9, trans-11 CLA, which is saturated at 
the position of the cis-9 double bond by the reductase enzyme, forming vaccenic acid 
(C18:1). This reductase enzyme needs free carboxyl radicals (COOH) to complete the 
reaction, which requires prior lipolysis of lipids from the diet. The next step involves a 
subsequent reduction from vaccenic acid (C18:1) to stearic acid (18:0) (16, 17). However, 
during this event, the intermediaries of this process can pass through the rumen, move 
through the bloodstream and be absorbed and incorporated into the fat in the tissues. 

Griinari and Bauman(18) proposed that the isomer of cis-9, trans-11 CLA, can eventually be 
converted into C18:1 trans-10 in rumen content. This speculation about the production 
of trans-10, cis-12 CLA was confirmed later. Coakley et al. and Ando et al., demonstrated 
that the Bifidobacterium sp, Propionibacterium sp, Lactococcus sp, Streptococcus sp and 
Lactobacillus sp, isolated from other habitats can also produce trans-10, cis-12 CLA 
(19, 20). These bacteria can be found in the rumen, although in a very small number, 
contributing to bio-hydrogenation and formation of trans-10, cis-12 CLA. The population 
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of these microorganisms was significantly increased in the rumen of animals feed with 
concentrated diets, which is consistent with the higher production of trans-10, cis-12 
CLA (21). According to Griinari et al. (22) and Chouinard et al.(23) there are some conditions 
that can intensify ruminal CLA synthesis, such as changes in the ruminal environment, 
increments in the amount of fatty acids in the diet and modifications in ruminal pH.

1.2. Non-ruminal synthesis
Endogenous CLA synthesis in tissues begins when C18:1 fatty acid is desaturated by 
the enzyme Δ9 desaturase (stearoyl-CoA desaturase – SCD), present in the mammary 
gland and in adipose tissue (24). In animals, desaturation occurs only up to carbon 9, 
due to the absence of enzymes Δ12 and Δ15 desaturases, present only in vegetables. 
Consequently, linoleic acid is considered an essential fatty acid and must be supplied 
through the diet as it is an essential precursor in the synthesis of prostaglandins. SCD 
introduces a double bond between carbons 9 and 10 of fatty acids. Reactions catalyzed 
by desaturases are essential to maintain the cell membranes fluidity (25).

To verify the hypothesis of endogenous CLA synthesis by the SCD enzyme, Griinari et 
al. (24) infused the abomasum of lactating cows with a mixture of C18:1 trans-11 and 
C18:1 trans-12 (50% -50%) and observed an increment of 31% in CLA cis-9, trans-11 
secreted in the milk. Based on that, they concluded that animals are really capable 
of endogenously produce cis-9, trans-11 CLA. In the other experiment, evaluating the 
contribution of endogenous CLA synthesis via SCD, the authors infused sterculia oil 
(an SCD inhibitor) and estimated that 64% of CLA in ruminants milk is endogenously 
produced. Corroborating these data, Corl et al. (26) also reported a 60-65% reduction in 
the cis-9, trans-11 isomer when the animals received a diet supplemented with sterculia 
oil. Kay et al. (27) estimated that 87 to 100% of the cis-9, trans-11 isomer, present in milk 
fat, was produced by an endogenous pathway in cows under pasture and supplemented 
with sterculia oil, they also demonstrated that it is possible to increase the levels of the 
cis-9, trans-11 isomer in milk, through the supplementation of trans fatty acids C18: 1.

In order to assess the biological effect of CLA on SCD activity, Lee et al. (28) using mice as 
experimental models, supplementing the diet with 42% of the cis-9, trans-11, and 44% of 
the trans-10, cis-12 isomer expression. In this study, a relative reduction in the expression 
of SCD hepatic messenger RNA (mRNA) was observed. In another experiment in which 
only the cis-9, trans-11 isomer was used, SCD expression was not altered. Based on 
these data, the authors inferred that the trans-10, cis-12 isomer is responsible for the 
inhibitory effects of SCD expression, a result confirmed later by Park et al (29). According 
to these data, it is assumed that trans-10, cis-12 isomer acts by directly inhibiting the 
SCD and that probably the double bond in the cis-12 position is the most important in 
this CLA inhibitory effect.

2. CLA modulates intracellular lipids accumulation
Lipid homeostasis in mammalian cells is regulated by a family of transcription factors 
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called sterol response element-binding protein (SREBP). These transcription factors 
control the activity and expression of more than 30 genes related to the synthesis of 
cholesterol, fatty acid, triglycerides, and phospholipids (30). In vivo and in vitro studies, 
reported that trans-10, cis-12 CLA influences the amount of intracellular lipids, through 
the modulation in gene expression and activity of enzymes under the command of 
SREBP.

During lipogenesis, the first fatty acid molecule (palmitic acid) is obtained from one 
molecule of acetyl-CoA and seven of malonyl-CoA. It requires two fundamental enzymes, 
(1) acetyl-CoA carboxylase (ACC), and (2) fatty acid synthases (FAS), responsible for the 
synthesis of malonyl-CoA and palmitic acid, respectively. Independent studies (31, 32)  
demonstrated that the infusion of the trans-10, cis-12 isomer in the bovine abomasum 
significantly reduced the expression of these lipogenic enzymes, consequently, 
decreasing milk fat content (48%), tissue lipogenic capacity (82%) and the expression 
of glycerol phosphate acyltransferase and acyl glycerol phosphate acyltransferase 
enzymes. Similarly, in in vitro studies, Pereira et al.(6) showed that CLA supplementation 
in culture media reduced lipid accumulation in bovine embryos. Later, Batista et al. (7) 
demonstrated that this reduction occurs through the modulation in the expression of 
1-acylglycerol 3-phosphate 0-acyltransferase (AGPAT) enzyme involved in triglycerides 
synthesis. Therefore, CLA supplementation has been proposed as an alternative to 
down-regulates lipogenic related genes (33), inhibits triacylglycerols synthesis and uptake, 
and consequently reduces the intracytoplasmic lipid accumulation (34, 35). In despite of 
all these exciting findings, the mechanisms that control lipid reduction induced by CLA 
was not yet fully elucidated.

3. CLA regulates cell membrane functionality
Cellular membrane surrounds the cell, limiting and maintaining the differences 
between cytosol and the extracellular matrix. Within eukaryotic cells, membranes of the 
nucleus, endoplasmic reticulum, Golgi apparatus, mitochondria, and other membrane-
bounded organelles maintain their physicochemical properties, as well as physiology 
(36). This structure is formed by a lipid bilayer (phospholipids, glycolipids, and sterols) 
and proteins, playing a central role in their functioning (37). During cryopreservation, 
intracellular ice crystals can rupture the plasma membrane and release cellular 
components (38). The incorporation of fatty acids in the phospholipid double layer of the 
plasma membrane alters its fluidity, and as a consequence can interfere with cellular 
metabolism (39). The components present in in vitro culture media can lead to lipid 
accumulation and its excessive content would cause changes in the plasma membrane, 
such as alterations in fluidity and functions (34), indicating a positive correlation between 
membrane fluidity and freezing tolerance. These modifications occur mainly due to 
the changes in the expression of genes related to adipogenesis (40). One of the main 
effects of CLA supplementation on embryo cryopreservation is the reduction in the 
expression of enzymes, caused by chemical agents responsible for triglyceride catalysis, 
reducing lipid exposure in embryonic cells (6). Additionally, Leite et al. (41) proposed that 
the addition of CLA in the culture medium can affect enzymatic digestion of the zona 
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pellucida, altering the hatching rate of embryos.

Cis-9, trans-11 and trans-10, cis-12 isomers supplementation changes lipidic profile of 
bovine embryos, reducing lipid droplets accumulation (42). The trans-10, cis-12 isomer acts 
on the absorption of free fatty acids without increasing lipolysis, on the incorporation 
of CLA in the lipid bilayer of the embryonic cell membrane, increasing the fluidity of the 
membrane (6, 42, 43) and consequently increasing the resistance to the cryopreservation.

	

4. Effect of CLA supplementation on semen cryopreservation
The spermatogenesis is a complex biological process in which a diploid germ cell 
(spermatogonia) after serial mitotic divisions gives rise to haploid germ cells. These 
spermatids gradually differentiate in spermatozoa that after spermiation, are 
released in the seminiferous tubules lumen. These sperm are passively transported 
to epididymis, where they acquire motility in a process named sperm maturation (44). 
Morphologically, sperm are divided into head (acrosomal and post-acrosomal) and tail 
(45). The tail of the male gamete is composed of the neck, main and terminal intermediate 
piece (46). The plasma membrane is responsible for involving all the sperm components 
and is composed of lipid and protein layers such as those containing phospholipids, 
cholesterol, glycolipids, and different types of proteins (47). The lipid composition of the 
plasma sperm membrane plays an important role in the physiological changes that 
lead to fertilization, in addition, it also affects the response of the sperm to cooling and 
freezing (48). This lipid composition on the membrane can be manipulated both in vivo 
and in vitro.

The species differences in the bull freezability of spermatozoa are in part attributable 
to the polyunsaturated fatty acid (PUFA) contents of their plasma membrane (49). In 
this sense, it has been shown that dietary supplementation with a wide range of PUFA 
supplements can alter the sperm fatty acid profile. Studies with rams (50, 51, 52), bulls (53, 

54), fowl, and boars (56) have suggested benefits after dietary supplementation of PUFA 
on some parameters. Like other polyunsaturated fatty acids, CLA can be incorporated 
into membrane phospholipids and perform biological effects as well, as demonstrated 
in the case of omega-3 fatty acids (57). However, using the rabbit as an experimental 
model, Abdelatty et al. (58) reported that supplementation of CLA (a mixture of the same 
proportion of isomers c9, t11-CLA and t10, c12-CLA) in the long term can alter the 
reproductive potential of males, especially if fed at a dose greater than 0.5%. In this 
study, the authors observed that 1% CLA supplementation decreased sperm motility 
and progressive motility, in addition to decreasing the testicular concentration of 
L-carnitine and α-tocopherol. This decrease in the amount of antioxidants in the testis, 
was associated with increased apoptosis in spermatogonia cells in the seminiferous 
tubules in the groups treated with CLA.

A similar result was also observed by Karimi et al. (59) in Holstein bulls. Evaluating the 
effect of CLA supplementation in the diet on the quality and freezability of sperm, the 
authors did not observe the effect of CLA on semen volume, sperm concentration and 
total sperm production (p> 0.05). However, the proportion of sperm with abnormal 
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morphology in fresh semen increased significantly (p <0.05) in the CLA-fed group 
compared to the control group. In addition, in the CLA-fed group, the proportion of 
post-thaw sperm with abnormal morphology at week 10 of the trial was significantly 
higher in the CLA than in the control group (p <0.05). Progressive motility tended to 
increase in the CLA-fed group, although dietary supplementation did not affect other 
CASA parameters or viability in fresh and thawed sperm (59).

The addition of fatty acids in semen cryopreservation media may influence the 
sperm motility after thawing, possibly by maintaining the membrane fluidity due to 
their incorporation in lipid bilayers. Maldjiana et al. (60) reported that the presence of 
lipids as diluents for cooling and freezing is essential to exchange components in an 
extracellular environment (61). In ovine semen, the addition of oleic-linoleic acids to the 
cryopreservation medium resulted in a beneficial effect in the preservation of sperm 
cell viability (62). Swine spermatozoa incubated for 4 h at 37 ºC in a dilution media 
containing oleic and linoleic acids demonstrated a significant improvement in motility 
and viability (63). The use of linoleic acid in the bovine semen cryopreservation medium 
caused an improvement in sperm motility after thawing, relating this result to a possible 
maintenance in membrane fluidity due to the incorporation of linoleic acid by the lipid 
bilayer (64). According to Kaeoket(65), semen extenders supplementation with some fatty 
acids would be a promising strategy to minimize oxidative oxygen species and also to 
protect the plasma membrane. 

Few studies have been evaluated the impact of CLA in the sperm cryopreservation, 
Soares et al. (66)  showed that the use of CLA isomers (cis-9, trans-11 and cis-10, trans 12) 
in the dilution medium of bovine sperm did not cause evident changes on viability and 
motility. However, in the treatment with 50 µM of CLA, sperm showed the highest values ​​​​
of average speed, and they also present a satisfactory fertilization rate (67). Meanwhile, in 
the treatment with 100 µM of CLA, sperm with a higher percentage of intact membrane 
and high mitochondrial potential were observed, however, none of these differences 
were significant (66).

More recently, Teixeira et al. (5) analyzed the use of 50 µM CLA in cryopreservation of 
wild boar semen, and have not observed advantages on the post-thaw boar sperm 
viability and integrity. Otherwise, Karimi et al. (59) demonstrated that Holstein bulls that 
received a CLA supplemented diet showed an increased sperm progressive motility but 
this change has no significant benefits, however, these authors have not observed any 
other advantage of this supplementation in both, fresh and frozen/thawed samples. 
Overall, the data available in the literature regarding CLA semen parameters are 
inconclusive, demanding more studies.

5. Effect of CLA supplementation on cryopreservation of oocytes
In mammals, germ cells develop surrounded by somatic cells forming ovarian follicles. 
The ovarian folliculogenesis starts during the embryonic development, since the 
dormant primordial follicle are activated and grows to the ovulatory follicles, that in 
the ovulation, releases metaphase II oocytes (68). The lipids present in the oocytes are 
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mostly triacylglycerols stored as lipid drops in the cytoplasm (69). Possibly, oocyte lipid 
accumulation occurs: (i) increasing lipogenesis, (ii) decreasing beta fatty oxidation and 
(iii) increasing cholesterol uptake from extracellular matrix or culture medium. According 
to Baumgard et al.(31)  CLA decreases lipids by a downregulation of lipogenic enzymes, 
and also reducing the levels of enzymes used in the consumption of circulating fats  (7). 

The demand for women fertility preservation has been increased among the years, 
mainly because of socioeconomic changes that led to the usual pregnancy postponing. 
Additionally, the increasing number of childhood cancer diagnostics in non-reproductive 
age and the improvements in cancer treatments claim for the necessity to preserve child 
gametes to be used after cancer remission. For female fertility preservation, oocyte 
cryopreservation would be the best option (70), however, because of their morphological 
characteristics, mainly due to the oocyte size, their cryopreservation is highly hampered 
and less efficient when compared to embryo and sperm cryopreservation (71).

Moreover, oocyte cryopreservation is very interesting for all animal species, especially 
for zootechnical purposes. In past years, some advances had been achieved in this field 
enhancing oocyte survival after cryopreservation, however, the current protocols are 
still inefficient. Female gametes are huge cells, with a reduced area/membrane surface 
rate. Thus, ice crystals setting up during the cryopreservation occurs more frequently, 
resulting in cell death after thawing. Furthermore, the cryopreservation stress would 
modify zona pellucida or ooplasm, causing structural and functional damage (72). Besides 
that, the membrane properties affect water and cryoprotectants flow, making the process 
even more difficult and sometimes unfeasible (73). Lipid conformation of embryos and 
oocytes is still considered as a parameter of quality and cryotolerance, mainly because 
of main damage related to cryopreservation occurs due to membrane or intracellular 
lipid modifications (74). It is already known that bovine oocytes are more resistant to 
cryopreservation compared to other investigated mammals’ species, and some authors 
suggested that it is due to their differences in the lipid composition (75). Even in cattle, 
the difference between breeds is notable, such as the number of cytoplasmic droplets 
and oocyte competence (76). Aardema et al. (77) noted that fatty supplementation in in 
vitro culture medium, such as linoleic acid, has positive effects on oocyte maturation, 
development of blastocysts, and increased tolerance to the cryopreservation of bovine 
oocytes. Ferreira et al. (78)) suggested that the quality control of in vitro culture media is 
relevant to the understanding of cryopreservation processes.

In 2011, Lapa et al. (4) studied the effect of CLA in oocyte maturation and in the lipid 
composition of cumulus-oocyte complexes (COCs). They did not observe significant 
differences in maturation or in embryo production rates. On the other hand, oocyte 
maturation in media supplemented with CLA (100 mM) led to a higher number of 
embryos with better quality at day 8, compared to the control group (7.7 ± 3.3 to 0.0 ± 
0.0 with very good quality and 32.2 ± 5.7 to 23.1 ± 7.4 with good quality, respectively). 
Consequently, this finding indicates that the maturation environment has an important 
influence in the oocyte capacity to generate healthy embryos with the ability to reach 
more advanced levels of development, and ultimately, that CLA supplementation on this 
stage, would modulate oocyte energy metabolism and improve embryo cryotolerance.
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Studies carried out by Matos et al.(79) investigated the effect of CLA in oocyte 
developmental competence after cryoprotectants exposure followed or not by 
vitrification and warming. They observed that CLA supplementation improved oocyte 
survival rates after vitrification, as well as improving cleavage rates, probably because 
of damage reduction. They also proposed that membrane permeability of both, water 
and cryoprotectants, would be influenced by the presence of CLA and, in this way, it 
was showed that bovine oocytes matured in a medium with CLA are more resistant to 
osmotic stress, reducing cellular cryodamage. Besides that, these oocytes presented 
a reduced rate of cryoprotectants influx (E.G. and DMSO 10%), which also can be 
responsible for the improvement of embryos quality. Taking together, these findings 
indicate that beyond the modulation of water and cryoprotectants flow through the 
cell membrane, CLA supplementation improves post-freezing oocyte viability, which 
provides a promising tool for female fertility preservation.

6. Effect of CLA supplementation on embryo cryopreservation
Lipid accumulation is associated with loss of embryonic viability and an increase in lesions 
caused by cryopreservation, especially in the early stages of embryonic development 
(80). Leite et al. (41).  showed that the supplementation of culture media with trans-10 
conjugated linoleic acid isomer, cis-12 reduced the deposition of intracytoplasmic lipids 
in embryonic cells. According to studies by Pereira et al. (6) the addition of CLA in the 
culture medium leads to a reduction in the expression of enzymes that participate in the 
synthesis of fatty acids, such as acylglycerol 3-phosphate acyltransferase responsible for 
catalyzing the synthesis of triglycerides, resulting, consequently, in reducing deposition 
lipid in embryonic cells.	

In vitro produced (IVP) embryos are more sensitive to conventional freezing or 
vitrification than in vivo ones, making this one of the main obstacles to the expansion 
of cryopreservation technology (81, 82, 83). The reduced cryotolerance of IVP embryos, 
especially those cultured in a medium supplemented with fetal bovine serum (FBS), 
was correlated with an excessive accumulation of lipid droplets throughout embryonic 
development in vitro (84, 74, 4). Triacylglycerols correspond to most of the intracellular lipids 
found in oocytes and embryos (85, 69, 86) and, while in bovine embryos in vivo triacylglycerols 
represent 40-50% of the total lipid mass, in in vitro embryos they can reach 88% (86). In 
order to avoid the undesirable accumulation of lipids, several studies have attempted 
to replace FBS in the culture medium (87). Despite its detrimental effects on embryonic 
quality (88), FBS contains substances necessary for embryonic development, such as fatty 
acids, amino acids, vitamins, heavy metal chelators and growth factors (89) and, therefore, 
the difficulty of avoiding or finding a suitable substitute for FBS in the preparation of IVP 
media (42). 

In this context, for embryo cryopreservation success, better techniques for 
cryopreservation must be developed or changes in the molecular composition of 
embryo culture media have to be done. The optimization of cryotechnics has shown 
limited success while changes in in vitro production systems have shown to be more 
promising, with the production of more cryotolerant and better-quality embryos (84). 
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Emerging studies have found molecules, capable of modulating molecular mechanisms 
that inhibit the uptake of lipids by cells. One of the most promising molecules is 
CLA, which acts specifically on adipocytes, reducing the uptake of fatty acids without 
increasing lipolysis (90, 91). Supplementation of media containing serum for embryonic 
culture with CLA trans-10, cis-12 octadecadienoic (trans-10, cis-12 CLA) increased 
blastocyst cryosurvival rate within 24 hours of the post-heating culture (6). Bovine in 
vitro produced embryos in CLA containing medium, have also demonstrated more 
resistance to micromanipulation and cryopreservation. Moreover, the addition of 
trans-10, cis-12 CLA to the culture medium did not affect the cleavage rate, the sex ratio 
of the embryos, the quality or development of the blastocyst stage and significantly 
reduced lipid accumulation (6). In contrast, Dias et al. (92) evaluated the inclusion of CLA 
in the in vitro culture of bovine embryos and observed that it was not able to improve 
the embryonic response when using the slow freezing method. 

More recently, Batista et al.(7) evaluated the effects of trans-10, cis-12 CLA on the 
development and cryotolerance of crossbred in vitro produced embryos. In those 
embryos cultured in CLA containing media, there was a reduction in the gene expression 
of the enzyme 1-acylglycerol 3-phosphate o-acyltransferase (AGPAT), a result that was 
associated with other findings, such as the reduction in the lipid content. However, a 
possible improvement in embryonic cryotolerance in response to CLA was not confirmed 
by hatching rates. These findings suggest that the reduction in the intracytoplasmic lipid 
accumulation caused by CLA, regardless of having a beneficial effect on reexpansion 
after cryopreservation, has not yet been sufficient to protect the embryo from harmful 
effects of cryopreservation (7). 

7. Effects of CLA diet supplementation on fertility
Linoleic acid is a necessary nutrient for the growth and reproduction of non-ruminants 
and an important supplement that has a direct link between energy balance, postpartum 
and subsequent fertility (93, 94). Studies by Castañeda-Guitiérrez et al. (95) described 
that, in dairy cows, supplementation with trans-10 cis-12 CLA increased estradiol, 
androstenedione and IGF-I levels, important factors that support folliculogenesis. 
Likewise, Taylor et al.(96) showed better fertility performance 12 weeks prior to lactation 
and Darwash et al.(97) observed a strong correlation between the time of the first 
ovulation and the time of conception of dairy cows supplemented with CLA. One of 
the most well-known beneficial actions of CLA is to mitigate the postpartum negative 
energy balance (98, 99). Additionally, CLA also would be important to avoid premature birth, 
once activates metalloproteinases, inhibiting their functions which prevents premature 
rupture of fetal membranes and premature births (99). Rodney et al. (100) and Rodney et 
al. (101) in a meta-analysis observed that individual fats do not have the ability to increase 
fertility, but the investigation of the use of CLA has shown positive results, however, the 
number of studies is still insufficient. Veth et al. (99) evaluated studies that indicated a 
reduction in pregnancy time, from 151 to 117 days, when cows were supplemented with 
rumen-protected CLA. Abolghasemi et al. (102) suggest that the CLA-enriched diet has 
beneficial effects such as reduced expression of the receptor endocannabinoid (CNR2) 
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and enzymes that synthesize fatty acid amides (NAPEPLD), in addition to an increase 
in PTGS2, resulting in an increase in plasma progesterone measurements during early 
lactation. Oliveira et al. (103) supplemented cows with CLA 18 days before parturition 
and observed that serum fat and β-hydroxybutyrate were reduced on days 1 and 7 
postpartum, resulting in a lower prevalence of hyperketonemia on day 14 postpartum. 
Chandler et al. (104) observed that primiparous cows, when supplemented with CLA, 
showed a tendency to increase the conception rate in the first service, also leading to a 
shorter calving interval, corroborating studies carried out by Gutiérrez et al. (105). Csillik 
et al. (106) investigated the use of CLA in high production multiparous dairy cows and 
observed an increase in post-ovulatory P4, an increase in fertility with a reduction in the 
period of calving until conception, an increase in plasma levels of IGF-1 and leptin. The 
lipids present in the diet are crucial for the formation of the plasma membrane of the 
sperm (107), however, studies in males are very limited. Abdelatty et al. (58) suggest that 
supplementation with CLA in doses greater than 0.5% for long term in male rabbits is 
not beneficial, despite the beneficial effects on growth, it does not balance the negative 
effects of fertility. Zamora-Zamora et al. (108) evaluated the inclusion of CLA in the diet 
at 1% of wild boars and did not observe differences regarding semen characteristics 
and fatty acid profile of sperm. Overall, diet supplementation with CLA would be an 
important strategy to enhance the reproductive performance of domestic mammals 
and is a field that requires further investigations.

Conclusion

The function of CLA in cryopreservation is exercised by two mechanisms: i) modulation 
of the lipid profile of the membrane and ii) amount of intracellular lipids. The effects 
of CLA supplementation on sperm, oocyte, and embryo cryotolerance are briefly 
compiled in Table 1. In sperm cryopreservation, the evidence suggests that CLA 
modulates sperm function mainly by modulating the lipid profile in the membrane. In 
sperm cryopreservation, the evidence suggests that CLA modulates exerts its effect on 
cryopreservation especially by modulating the lipid profile in the membrane. However, 
these effects on sperm cryopreservation are minimal or even negative, especially when 
supplemented in the diet. In oocytes and embryos, the evidence suggests that CLA acts 
both at the level of the lipid profile in the membrane and in the amount of intracellular 
lipids. In these cells, the information in the literature demonstrates a beneficial effect 
of these fatty acids on cryopreservation. CLA supplementation in oocyte, during in 
vitro maturation or cryopreservation, has improved both viability after freezing and 
their developmental competence, representing a very promising strategy to produce 
more cryotolerant embryos. Otherwise, the decrease of intracytoplasmic lipid content 
observed in embryos cultured in CLA containing media, and its positive effect on 
embryo survival after cryopreservation open new avenues in embryo production and 
cryobiology. Finally, further studies are necessary in order to evaluate CLA effects on 
gonad, oocyte, sperm, and embryo cryopreservation.
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