INDICADORES DE RESISTÊNCIA À CARBONATAÇÃO EM CONCRETOS COM MATERIAIS CIMENTÍCIOS SUPLEMENTARES

Autores

DOI:

https://doi.org/10.5216/reec.v20i1.80502

Palavras-chave:

Concreto, Carbonatação, Materiais cimentícios suplementares, Reserva alcalina, Porosidade

Resumo

RESUMO:  Concretos produzidos com a substituição parcial do cimento Portland por materiais cimentícios suplementares (SCM’s) são comuns, e garantem benefícios econômicos, sustentáveis e de elevar o desempenho e durabilidade dos concretos. Entretanto a substituição de clínquer por outro tipo de material reduz a reserva alcalina do sistema, o que é um agravante para concretos armados, pois a alta alcalinidade do meio garante a formação de uma camada passivadora em torno do aço impedindo o início do processo de corrosão. O conhecimento dos mecanismos de carbonatação em sistemas compostos é imprescindível na dosagem do concreto, onde se escolhe o SCM mais adequado e seu teor de substituição. O presente trabalho pondera a necessidade de se fazer um balanço entre o prejuízo causado à barreira química pela redução da reserva alcalina, e o benefício à barreira física através da redução da porosidade, ocasionados pelos SCM’s, para se garantir a boa durabilidade de concretos sujeitos a carbonatação e propõe a utilização de um indicador de resistência à carbonatação em função dos teores de cálcio e sílica presentes nos materiais.

Downloads

Não há dados estatísticos.

Biografia do Autor

Andrielli Morais de Oliveira, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brasil.

Engenheira Civil, Doutora, Professora da Escola de Engenharia Civil e Ambiental (EECA) e do Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil (PPG-GECON) da Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil.

Maryah Costa de Moraes Buth, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brasil.

Engenheira Civil, Mestre, Doutoranda pelo Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil (PPG-GECON) da Escola de Engenharia Civil e Ambiental (EECA) da Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil.

Helena Carasek, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brasil.

Engenheira Civil, Doutora, Pró-Reitora de Pesquisa e Inovação, Professora da Escola de Engenharia Civil e Ambiental (EECA) e do Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil (PPG-GECON) da Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil.

Oswaldo Cascudo, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brasil.

Engenheiro Civil, Doutor, Professor da Escola de Engenharia Civil e Ambiental (EECA) e do Programa de Pós-Graduação em Geotecnia, Estruturas e Construção Civil (PPG-GECON) da Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil.

Referências

BAROGHEL-BOUNY, V.; CAPRA, B.; LAURENS, S. A durabilidade das armaduras e do concreto de cobrimento; trad. CASCUDO, O. In: CASCUDO, O.; CARASEK, H. (eds. trad.); OLLIVIER, J.-P.; VICHOT, A. (eds.). Durabilidade do concreto: bases científicas para a formulação de concretos duráveis de acordo com o ambiente. 1ª. ed. São Paulo: IBRACON, p. 237-254. Cap. 9. 2014.

BORGES, P.; COSTA, J.; MILESTONE, N.; LYNSDALE, C.; STREATFIELD, R. Carbonation of CH and C–S–H in composite cement pastes containing high amountsof BFS. Cement and Concrete Research, 2010, 40: 284-292.

BOUMAAZA, M.; TURCRY, P.; HUET, B.; AIT-MOKHTAR, A. Influence of carbonation on the microstructure and the gas diffusivity of hardened cement pastes. Construction and Building Materials, 2020, 253: 119227.

BUCHER, R.; DIEDERICH, P.; ESCADEILLAS, G.; CYR, M. Service life of metakaolin-based concrete exposed to carbonation Comparison with blended cement containing fly ash, blast furnace slag and limestone filler. Cement and Concrete Research, 2017, 99: 18 – 29.

CASCUDO, O. O Controle da Corrosão de Armaduras em Concreto - Inspeção e técnicas eletroquímicas. 1ª ed. São Paulo: PINI, Editora UFG, Goiânia. 1997.

CASCUDO, O.; CARASEK, H. Carbonatação do concreto. In: TUTIKIAN, B.; PACHECO, F.; ISAIA, G. C.; BATTAGIN, I. (eds.). Concreto: Ciência e Tecnologia. 3 ed. São Paulo: IBRACON. v. 2, p. 965- 1011. Cap.23. 2022.

CASCUDO, O.; PIRES, P.; CARASEK, H.; CASTRO, A.; LOPES, A. Evaluation of the Pore Solution of Concretes with Mineral Additions Subjected to 14 Years of Natural Carbonation. Cement and Concrete Composites 115: 103858. 2021.

CASTRO, A. Influência das adições minerais na durabilidade do concreto sujeito à carbonatação. Dissertação de Mestrado em Geotecnia, Estruturas e Construção Civil, UFG, Goiânia, 2003.

GREVE-DIERFELD, S.; LOTHENBACH, B.; VOLLPRACHT, A.; WU, B.; HUET, B.; ANDRADE, C; MEDINA, C.; THIEL, C.; GRUYAERT, E.; VANOUTRIVE, H.; BOSQUE, I.; IGNJATOVIC, I.; ELSEN, J.; PROVIS, J.; SCRIVENER, K.; THIENEL, K.; SIDERIS, K.; ZAJAC, M.; ALDERETE, N.; CIZER, O.; HEEDE, P.; HOOTON, R.; KAMALI-BERNARD, S.; BERNAL, S.; ZHAO, Z.; SHI, Z.; BELIE, N. Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures, 2020, 53: 136.

HYVERT, N.; SELLIER, A.; DUPRAT, F.; ROUGEAU, F. FRANCISCO, P. Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation. Cement and Concrete Research, 2010, 40: 11, p. 1582-1589.

JUENGER, M. C.G.; SNELLINGS, R.; BERNAL, S. A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cement and Concrete Research 122: 257–73. 2019.

JUSTNES, IL.; SKOCEK, J.; OSTNOR, T.; ENGELSEN, C.; SKJOLSVOLD, OL. Microstructural changes of hydrated cement blended with fly ash upon carbonation. Cement and Concrete Research, 2020, 137: 106192.

KULAKOWSKI, M. P. Contribuição ao estudo da carbonatação em concretos e argamassas compostos com adição de sílica ativa. Tese (Doutorado em Engenharia), Centro de Tecnologia da Escola de Engenharias - Universidade Federal do Rio Grande do Sul, Porto Alegre. 2002.

KULAKOWSKI, M.; PEREIRA, F.; DAL MOLIN, D. Carbonation-induced reinforcement corrosion in silica fume concrete. Construction and Building Materials, 2009, 23: 1189 – 1195.

LEEMANN, A.; MORO, F. Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity. Materials and Structures, 2017, 50:30.

LI, J.; YU, Q.; HUANG, H.; YIN, S. Effects of Ca/Si Ratio, Aluminum and Magnesium on the Carbonation Behavior of Calcium Silicate Hydrate. Materials 12 (8): 1268. 2019.

LI, L.; ZHENG, J.; NG, P.; KWAN, A. Synergistic cementing efficiencies of nano-silica and micro-silica in carbonation resistance and sorptivity of concrete. Journal of Building Engineering, 2021, 33: 101862.

LOLLINI, F.; REDAELLI, E. Carbonation of blended cement concretes after 12 years of natural exposure. Construction and Building Materials, 2021, 276: 122122.

LOTHENBACH, B.; SCRIVENER, K.; HOOTON, R. Supplementary cementitious materials. Cement and Concrete Research, 2011, 41: 1244–1256.

MORANDEAU, A.; THUÉRY, M.; DANGLA, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cement and Concrete Research,2014, 56: p. 153 – 170.

ORTOLAN, V. K.; MANCIO, M.; TUTIKIAN, B. F. Evaluation of the Influence of the PH of Concrete Pore Solution on the Corrosion Resistance of Steel Reinforcement. Journal of Building Pathology and Rehabilitation 1 (1): 10. 2016.

PASSOS, P. M. Influência das características microestruturais de diferentes metacaulins nas propriedades e microestrutura de concretos. Dissertação de Mestrado em Geotecnia, Estruturas e Construção Civil, UFG, Goiânia, 2019.

PERIM, J. Influência do metacaulim na durabilidade de concretos usuais de mercado sujeitos à carbonatação acelerada. Dissertação de Mestrado em Geotecnia, Estruturas e Construção Civil, UFG, Goiânia, 2013.

PIRES, P. F. Estudo da carbonatação avançada em concretos contendo adições minerais. Dissertação (Mestrado em Geotecnia, Estruturas e Construção Civil). Escola de Engenharia Civil - Universidade Federal de Goiás, Goiânia. 2016.

PHAM, S.; PRINCE, W. Effects of Carbonation on the Microstructure of Cement Materials: Influence of Measuring Methods and of Types of Cement. International Journal of Concrete Structures and Materials, 2014, v.8, n. 4, p. 327 – 333.

QIU, Q. A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Construction and Building Materials, 2020, 47: 118503.

RAMANATHAN, S.; CROLY, M.; SURANENI, P. Comparison of the effects that supplementary cementitious materials replacement levels have on cementitious paste properties. Cement and Concrete Composites, 2020, 112: 103678.

SHAH, V.; BISHNOI, S. Carbonation resistance of cements containing supplementary cementitious materials and its relation to various parameters of concrete. Construction and Building Materials, 2018, 178: 219–232.

SHI, Z.; LOTHENBACH, B.; GEIKER, M.; KAUFMANN, J.; LEEMANN, A.; FERREIRO, S.; SKIBSTED, J. Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 2016, 88: 60–72.

VAN DEN HEEDE P, DE SCHEPPER M, DE BELIE N. Accelerated and natural carbonation of concrete with high volumes of fly ash: chemical, mineralogical and microstructural effects. Royal Society Open Science, 2018, 6: 181665. http://dx.doi.org/10.1098/rsos.181665.

WIERIG, J. H. Longtime studies on the carbonation on concrete under normal outdoor exposure. RILEM seminar durability of concrete structures under normal outdoor exposure, 1984, 239–49. 1984.

WU, B.; YE, G. Development of porosity of cement paste blended with supplementary cementitious materials after carbonation. Construction and Building Materials, 2017, 14: 52–61.

Downloads

Publicado

2024-09-16

Como Citar

MORAIS DE OLIVEIRA, A.; COSTA DE MORAES BUTH, M.; CARASEK, H.; CASCUDO, O. INDICADORES DE RESISTÊNCIA À CARBONATAÇÃO EM CONCRETOS COM MATERIAIS CIMENTÍCIOS SUPLEMENTARES. REEC - Revista Eletrônica de Engenharia Civil, Goiânia, v. 20, n. 1, p. 14–29, 2024. DOI: 10.5216/reec.v20i1.80502. Disponível em: https://revistas.ufg.br/reec/article/view/80502. Acesso em: 26 set. 2024.