MAPEAMENTO SISTEMÁTICO DE REFERÊNCIAS SOBRE SUPERFÍCIES DE ESCOAMENTO DE MATERIAIS POROSOS E DE MICROESTRUTURAS HETEROGÊNEAS

Autores

DOI:

https://doi.org/10.5216/reec.v20i2.79786

Palavras-chave:

Materiais Porosos, Superfície de escoamento, EVR, MEC

Resumo

O estudo da homogeneização em análises numéricas de materiais heterogêneos tem recebido considerável atenção no campo da engenharia. Este artigo apresenta uma revisão sistemática de modelos constitutivos que investigam materiais heterogêneos, com ênfase específica em materiais porosos. Também é considerado o Método dos Elementos de Contorno (MEC), pois o mesmo tem sido aplicado em diversas pesquisas recentes para análises complexas, como a condutividade térmica em materiais micro-porosos, análise de comportamento de microestruturas heterogêneas e análises viscoelásticas e termoelásticas. As fontes para tal pesquisa foram as bases de dados CAPES e SCOPUS. O mapeamento permitiu identificar as principais lacunas sobre o tema destacando a importância de compreender a influência dos vazios nas propriedades desses materiais, evidenciando sua complexidade e heterogeneidade. Observou-se ainda uma lacuna quando se trata desse tipo de análise utilizando o MEC, possibilitando desenvolver estudos na área.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lorena Estrela Peixoto, Universidade Federal de Catalão (UFCAT), Catalão, Goiás, Brasil

Engenheira Civil, Mestranda em Mecânica das Estruturas e dos Materiais, Universidade Federal de Catalão, Catalão, Goiás, Brasil

Gabriela Rezende Fernandes, Universidade Federal de Catalão (UFCAT), Catalão, Goiás, Brasil

Engenheira Civil, Doutora, Professora Titular, Faculdade de Engenharia, Universidade Federal de Catalão (UFCAT), Catalão, Goiás, Brasil

Referências

___. CAPES - Portal de Periódicos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. 2017. Disponível em: http://www-periodicos-capes-gov-br.ez49.periodicos.capes.gov.br/. Acesso em: 31 maio 2024.

___. Scopus. 2017. Disponível em: https://www.scopus.com/. Acesso em: 31 de maio 2024.

___. Scielo. 2024. Disponível em: https://www.scielo.org/. Acesso em: 31 de maio 2024.

AZIZI, R.; LEGARTH, B.; NIORDSON, F. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure. Journal of the Mechanics and Physics of Solids, v. 61, n. 4, p. 991-1009, abr. 2013. DOI: https://doi.org/10.1016/j.jmps.2012.12.004.

AZEVEDO, C. A. C. de. Formulação alternativa para análise de domínios não-homogêneos e inclusões anisotrópicas via MEC. 2007. Dissertação (Mestrado em Estruturas) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007. Disponível em: doi:10.11606/D.18.2007.tde-18102007-110753. Acesso em: 26 jun. 2024.

BAILEY, J.; BUDGEN, D.; TURNER, M; KITCHENHAM, B; BRERETON, P.; LINKMON, S. Evidence relating to Object-Oriented software design: A survey. First International Symposium on Empirical Software Engineering and Measurement. Computer Society, 2007.

BENSAADA, R.; KANIT, T.; IMAD, A.; ALMANSBA, M.; SAOUAB, A. Void-growth computational analysis in elastic-plastic porous materials. International Journal of Mechanical Sciences, v. 217, 107021, mar. 2022. Disponível em: https://doi.org/10.1016/j.ijmecsci.2021.107021. Acesso em: 16 jun. 2024.

BILGER, N. et al. Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis. International Journal of Solids and Structures, v. 42, n. 2, p. 517-538, jan. 2005. Disponível em: https://doi.org/10.1016/j.ijsolstr.2004.06.048. Acesso em: 16 jun. 2024.

BILGER, N., AUSLENDER, F., BORNERT, M., MOULINEC, H., & ZAOUI, A. Bounds and Estimates for the Effective Yield Surface of Porous Media with a Uniform or a Nonuniform Distribution of Voids. European Journal of Mechanics - A/Solids, v. 26, n. 5, 810-836, set. 2007. Disponível em: <https://doi.org/10.1016/j.euromechsol.2007.01.004>. Acesso em: 16 jun. 2024.

Brebbia, C. A.; Dominguez, J. Boundary Elements: An Introductory Course. Southampton: McGraw Hill, 1989.

BONFOH, N.; LIPINSKI, P. Ductile damage micromodeling by particles’ debonding in metal matrix composites. International Journal of Mechanical Sciences, v. 49, n. 2, p. 151-160, fev. 2007. DOI: https://doi.org/10.1016/j.ijmecsci.2006.08.015.

BOURIH, A.; KADDOURI, W.; KANIT, T.; MADANI, S.; IMAD, A. Effective yield surface of porous media with random overlapping identical spherical voids. Journal of Materials Research and Technology, v. 7, n. 2, p. 103–117, abr. 2018. Disponível em: https://doi.org/10.1016/j.jmrt.2017.01.002. Acesso em: 24 jun. 2024.

BUDGEN, D., TURNER, M., BRERETON, P., KITCHENHAM, B., Using Mapping Studies in Software Engineering. In: Proceedings of PPIG 2008, Lancaster University, 2008, pp. 195–204.

CHOI, S. H.; BARLAT, F.; LIU, J. Efeito de precipitados na anisotropia plástica para ligas de alumínio policristalino. Metallurgical and Materials Transactions A, v. 32, p. 2239-2247, 2001. Disponível em: <https://doi.org/10.1007/s11661-001-0199-2>.

CROZARIOL, L. H. de R. Análise do comportamento de microestruturas heterogêneas pelo método dos elementos de contorno considerando-se não-linearidade física. 157f. Dissertação (Mestrado em Estruturas) – Faculdade de Engenharia de Ilha Solteira – Universidade Estadual Paulista – UNESP, Ilha Solteira, 2017.

EDMANS, Ben; ALFANO, Giulio; BAHAI, H. Nonlinear multi-scale homogenization with different structural models at different scales. International Journal for Numerical Methods in Engineering, v. 94, p. 355-373, 2013. DOI: 10.1002/nme.4447.

ELMINOR, H.; BAHRAOUI, I.; ELMINOR, H.; HILALI, E.; KANIT, T. Numerical approach to estimate the effective yield surface of random porous media for spherical voids. IOSR Journal of Mechanical and Civil Engineering, v. 13, n. 05, p. 26–32, maio 2016. Disponível em: https://doi.org/10.9790/1684-1305072632. Acesso em: 24 jun. 2024.

FERNANDES, G. R., OHLAND, G. A., VIERIA, J. F.; A boundary elemento formulation to perform elastic analysis of heterogeneous microstructures. Engineering Analysis with Boundary Elements., v.87, p.47-65; 2018. Disponível em: https://doi.org/10.1016/j.enganabound.2017.11.006.

FERREIRA, A. R.; PROENÇA, S. P. B.; BENALLAL, A. Yield criteria for voided materials with anisotropic matrix behavior. European Journal of Mechanics - A/Solids, v. 104, 105079, mar. 2024. Disponível em: https://doi.org/10.1016/j.euromechsol.2023.105079. Acesso em: 24 jun. 2024.

FILHO, C. A. F. V.; CAVALCANTE, M. A. A. Evaluation of macroscopic yield surfaces of periodic porous microstructures employing transformation field analysis and high order finite element method. Materials Today Communications, v. 34, 105462, mar. 2023. Disponível em: https://doi.org/10.1016/j.mtcomm.2023.105462. Acesso em: 24 jun. 2024.

GAL, E.; KRYVORUK, R. Fiber reinforced concrete properties - A multiscale approach. Computers and Concrete, v. 8, n. 5, p. 525-542, 2011. DOI: 10.12989/cac.2011.8.5.525.

GĂRĂJEU, M.; SUQUET, P. On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites: Application to porous materials. Journal of the Mechanics and Physics of Solids, v. 55, n. 4, p. 842-878, abr. 2007. DOI: https://doi.org/10.1016/j.jmps.2006.09.005.

GURSON, A. L. Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, v. 99, p. 2-15, 1977.

HURE, J. Yield criterion and finite strain behavior of random porous isotropic materials. European Journal of Mechanics - A/Solids, v. 85, 104143, jan. 2021. Disponível em: https://doi.org/10.1016/j.euromechsol.2020.104143. Acesso em: 24 jun. 2024.

KAMENYARZH, Ya. A.; YAKUSHEVA, Ye. V. The evolution of a plastic zone near a hole. Journal of Applied Mathematics and Mechanics, v. 57, n. 1, p. 181-196, jan. 1993. Disponível em: https://doi.org/10.1016/0021-8928(93)90112-Y. Acesso em: 16 jun. 2024.

KHATAM, H.; PINDERA, M. Plastic deformation modes in perforated sheets and their relation to yield and limit surfaces. International Journal of Plasticity, v. 27, n. 10, p. 1537-1559, out. 2011. DOI: https://doi.org/10.1016/j.ijplas.2010.10.004.

KHINDR, Y.; KANIT, T.; Fahmi, Z.; NAÏT-ABDELAZIZ, M. Computational homogenization of plastic porous media with two populations of voids. Materials Science and Engineering: A, v. 597, p. 324-330, mar. 2014. DOI: https://doi.org/10.1016/j.msea.2013.12.095.

KHINDR, Y.; KANIT, T.; Fahmi, Z.; NAÏT-ABDELAZIZ, M. A computational homogenization of random porous media: effect of void shape and void content on the overall yield surface. European Journal of Mechanics - A/Solids, v. 49, p. 137-145, jan. 2015. DOI: https://doi.org/10.1016/j.euromechsol.2014.07.001.

LIAO, K.-C. Yield criteria for porous ductile sheet metals with planar anisotropy under plane stress conditions. Computers & Structures, v. 82, n. 29-30, p. 2573-2583, nov. 2004. Disponível em: https://doi.org/10.1016/j.compstruc.2004.02.027. Acesso em: 16 jun. 2024.

Li, Z., Steinmann, P. RVE-Based Studies on the Coupled Effects of Void Size and Void Shape on Yield Behavior and Void Growth at Micron Scales. International Journal of Plasticity, v. 22, n. 7, p. 1195-1216, jul. 2006. https://doi.org/10.1016/j.ijplas.2005.07.004

LIPPITZ, N.; RURKOWSKA, K.; RÖSLER, J.; LANGER, S. Fouling behaviour of porous metals. Procedia Materials Science, v. 4, p. 299-303, 2014. Disponível em: https://doi.org/10.1016/j.mspro.2014.07.561.

LOBO, F.; FERREIRA, M. E.; UCHOA, C.; COSTA, J. V. da. Uso de Plataformas Aéreas Não Tripuladas no Brasil – um Panorama de Dez Anos (2008-2018) de Publicações Acadêmicas. Revista Brasileira de Cartografia, [S. l.], v. 72, p. 785–806, 2020. DOI: 10.14393/rbcv72nespecial50anos-56503. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/56503.

NIORDSON, C. F.; TVERGAARD, V. A homogenized model for size-effects in porous metals. Journal of the Mechanics and Physics of Solids, v. 123, p. 222-233, 2019. ISSN 0022-5096. DOI: 10.1016/j.jmps.2018.09.004.

PASSOS, D. da S., VENEGA, V. de S., & ROCHA, M. L. (2018). SOFTWARES PARA SUPORTE NO ENSINO DE ENGENHARIA CIVIL: UM MAPEAMENTO SISTEMÁTICO DO USO NAS INSTITUIÇÕES BRASILEIRAS. REVISTA CEREUS, 9(4), 2-18. Disponível em: http://ojs.unirg.edu.br/index.php/1/article/view/1865.

PETERSEN, Kai; FELDT, Robert; MUJTABA, Shahid; MATTSSON, Michael. Systematic Mapping Studies in Software Engineering. In: Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering, v. 17, 2008.

PINDERA, M-J.; ABOUDI, J. Micromechanical analysis of yielding of metal matrix composites. International Journal of Plasticity, v. 4, n. 3, p. 195-214, jan. 1988. Disponível em: https://doi.org/10.1016/0749-6419(88)90010-1.

PONTES, G.B da S.; Análise não linear física de chapas considerando-se uma abordagem multiescala pelo método dos elementos de contorno. Ilha Solteira: [s.n.], 2019 141 f. Dissertação (Mestrado em Estruturas) – Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista – UNESP, Ilha Solteira, 2019.

MADOU, K.; LEBLOND, J. Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids - I: Yield surfaces of representative cells. European Journal of Mechanics - A/Solids, v. 42, p. 480-489, nov. 2013. DOI: https://doi.org/10.1016/j.euromechsol.2013.06.004.

MONCHIET, V.; KONDO, D. Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials. International Journal of Plasticity, v. 43, p. 20-41, abril de 2013. DOI: https://doi.org/10.1016/j.ijplas.2012.10.007.

NAKAJIMA, H. Fabrication, properties, and applications of porous metals with directional pores. Proceedings of the Japan Academy, Ser. B, v. 86, P. 884-899, 2010. Disponível em: https://translate.google.com/website?sl=en&tl=pt&hl=pt-BR&prev=search&u=https://doi.org/10.2183%252Fpjab.86.884.

NEEDLEMAN, A.; TVERGAARD, V. An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids, v. 32, n. 6, p. 461-490, 1984. ISSN 0022-5096. DOI: 10.1016/0022-5096(84)90031-0.

NIORDSON, C. F.; TVERGAARD, V. A homogenized model for size-effects in porous metals. Journal of the Mechanics and Physics of Solids, v. 123, p. 222–233, fev. 2019. Disponível em: https://doi.org/10.1016/j.jmps.2018.09.004. Acesso em: 1 jun. 2024.

OLIVEIRA, C. M. et al. RFID nos cuidados com a saúde: uma revisão de mapeamento sistemático. Acta Biomédica Brasiliência, vol. 9, n. 1, abril de 2018. Gale OneFile: Informe Académico. Disponível em: <https://link.gale.com/apps/doc/A544711949/IFME?u=anon~83b57702&sid=googleScholar&xid=7fcb4176>.

PASTOR, J.; PONTE CASTANEDA, P. Critérios de rendimento para meios porosos em deformação plana: estimativas de segunda ordem versus resultados numéricos. Comptes Rendus Mécanique, v. 330, n. 11, p. 741-747, 2002. DOI: 10.1016/S1631-0721(02)01526-7. Disponível em: <https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01526-7>.

PAULA, H. M. D.; ILHA, M. S. D. O. Uso da Moringa oleifera no tratamento de águas residuárias de usinas de concreto: mapeamento sistemático. REEC - Revista Eletrônica de Engenharia Civil, v. 11, n. 1, p. 50 - 60, 2016.

PETERSEN, K.; FELDT; R.; MUJTABA, S.; MATTSSON, M. Systematic Mapping Studies in Software Engineering. School of Engineering, Blekinge Institute of Technology. University of Bari, Italy, 26 - 27 June. 2008.

PITALUGA, C. G. Análise em multi-escala de flexão de placas pelo método dos elementos de contorno. Catalão: Dissertação (Mestrado) - Unidade Acadêmica Especial de Engenharia, Regional Catalão, Universidade Federal de Goiás, 2022.

Santa Anna, J. “Mapeamento sistemático Na Base De Dados Em Ciência Da Informação: Periódicos científicos Em discussão”. Brazilian Journal of Information Science: Research Trends, vol. 12, nº 1, maio de 2018, doi:10.36311/1981-1640.2018.v12n1.07.p68.

SANTOS, W. F. Análise numérica do comportamento de microestruturas porosas. 2018. 106 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) – Universidade Federal de Goiás – Regional Catalão, Catalão, 2018.

SANTOS, W. F. dos; FERREIRA, A. R.; PROENÇA, S. P. B. Complete geometric representation of yield surfaces for porous ductile media by a 3D computational homogenization approach: an assessment of the Gurson yield criterion. Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 44, n. 5, 163, maio 2022. Disponível em: https://doi.org/10.1007/s40430-022-03483-1. Acesso em: 24 jun. 2024.

SANTOS, W. F. dos; FERREIRA, A. R.; PROENÇA, S. P. B. Isotropic yield surfaces for porous ductile materials: complete geometric representation by a computational homogenisation procedure. Engineering Computations, v. 40, n. 4, p. 737-771, 15 jun. 2023. Disponível em: https://doi.org/10.1108/EC-12-2021-0718. Acesso em: 24 jun. 2024.

SENA, J. P.; SILVA, W. A. da; SANTOS, I. C.; OLIVEIRA, M. H.; FERREIRA, M. de P. Atualização de modelos numéricos a partir de dados experimentais para monitoramento estrutural: mapeamento sistemático. Revista Eletrônica de Engenharia Civil, v. 18, n. 2, p. 60-71, 2022. DOI: [10.5216/reec.v18i2.63758](https://doi.org/10.5216/reec.v18i2.63758).

SÉNAC, C.; HURE, J.; TANGUY, B. Yield surface for void growth and coalescence of porous anisotropic materials under axisymmetric loading. Journal of the Mechanics and Physics of Solids, v. 179, 105365, out. 2023. Disponível em: https://doi.org/10.1016/j.jmps.2023.105365. Acesso em: 24 jun. 2024.

SHEN, W.Q.; CAO, Y.J.; SHAO, J.F.; LIU, Z.B. Prediction of plastic yield surface for porous materials by a machine learning approach. Materials Today Communications, v. 25, dez. 2020, 101477. Disponível em: https://doi.org/10.1016/j.mtcomm.2020.101477. Acesso em: 24 jun. 2024.

SVOBODNIK, A. J.; BÖHM, H. J.; RAMMERSTORFER, F. G. A 3/D finite element approach for metal matrix composites based on micromechanical models. International Journal of Plasticity, v. 7, n. 8, p. 781-802, jan. 1991. Disponível em: https://doi.org/10.1016/0749-6419(91)90018-T. Acesso em: 16 jun. 2024.

UTSUNOMIYA, H.; MATSUMOTO, R. Deformation processes of porous metals and metallic foams (review). Procedia Materials Science, v. 4, p. 245-249, 2014. Disponível em: https://doi.org/10.1016/j.mspro.2014.07.614.

XENOS, S.; ARAVAS, N.; DANAS, K. A homogenization-based model of the Gurson type for porous metals comprising randomly oriented spheroidal voids. European Journal of Mechanics - A/Solids, v. 105, 105238, maio 2024. Disponível em: https://doi.org/10.1016/j.euromechsol.2024.105238. Acesso em: 24 jun. 2024.

Downloads

Publicado

2024-09-19

Como Citar

ESTRELA PEIXOTO, L.; REZENDE FERNANDES, G. MAPEAMENTO SISTEMÁTICO DE REFERÊNCIAS SOBRE SUPERFÍCIES DE ESCOAMENTO DE MATERIAIS POROSOS E DE MICROESTRUTURAS HETEROGÊNEAS. REEC - Revista Eletrônica de Engenharia Civil, Goiânia, v. 20, n. 2, p. 1–13, 2024. DOI: 10.5216/reec.v20i2.79786. Disponível em: https://revistas.ufg.br/reec/article/view/79786. Acesso em: 19 nov. 2024.